Search

Published After
Published Before

Search Results

  • Herbicide tolerance of maize genotypes in the wet 2016 year
    13-18
    Views:
    171

    The herbicide tolerance levels of 49 Martonvásár inbred parents were examined in Martonvásár in a herbicide susceptibility trial in 2016. The normal dosage recommended in the permit documentations and double dosage were used for the 12 small-plot herbicide treatments performed in two repetitions. Spraying of early post-emergent herbicides was carried out in the 1–2-leaf stage, while post-emergent treatments were applied in the 7–8-leaf stage of maize. The extent of phytotoxicity was scored for the early post-emergent herbicides two and four weeks after treatments and for the post-emergent herbicides two weeks after treatments, respectively. Some of the herbicides examined are not approved in seed production; however it is important to know the reaction of maize parent genotypes for every type of herbicides. The active agent topramezone was withdrawn from the market in 2015, but it was included in the trials as its usage was allowed until stocks run out in 2016. The herbicide agents were examined as follows: mesotrione + S-metolachlor + terbutylazine; isoxaflutol + tiencarbazon methyl + cyprosulfamide; isoxaflutol + cyprosulfamide; mesotrione + terbuthylazine; tembotrione + isoxidifen-ethyl; mesotrione + nicosulfuron; prosulfu ron; nicosulfuron +prosulfuron + dicamba; bentazone + dicamba; nicosulfuron; topramezone; foramsulfuron + isoxadifen-ethyl.
    Among early post-emergent herbicides, isoxaflutol + cyprosulfamide caused the less phytotoxic damage in the genotypes. The large amount of precipitation during the spring facilitated the infiltration of the active ingredient S-metolachlor, used regularly and successfully also in seed production, into the root zone, resulting in phytotoxic symptoms on susceptible inbred lines at the time of the first inspection. These genotypes recovered by the end of the vegetation period. The spring weather was cooler than usual, retarding the development of maize and thus led to the slower fermentation of herbicide active ingredients, accordingly, all of the post-emergent herbicides caused visible phytotoxic symptoms on some of genotypes. The most severe damages were generally caused by the double dosage of nicosulfuron + prosulfuron + dicamba, nicosulfuron, and foramsulfuron + isoxadifen-ethyl.

  • Phytotoxicity levels in a wet year in an experiment on maize sensitivity to herbicides
    92-96
    Views:
    208

    The phytotoxic effects of herbicides applied pre-, early post- and post-emergence were studied in maize in a herbicide sensitivity experiment were set up in Martonvásár and Törökszentmiklós. The herbicides were applied in normal and in double doses to 37 Martonvásár inbred lines and to six parental single crosses. The small-plot experiments were set up in two replications. The wet weather that followed the pre- and early post-emergence treatments promoted the appearance of phytotoxic symptoms on maize. The degree of phytotoxicity was recorded on the 14th day after post-emergence treatment and on the 14th and 28th days after the pre- and early postemergence treatments. Herbicides applied pre-emergence only caused slight symptoms on maize. Although the double dose increased the damage, it was still not more than 5% on average. The symptoms caused by herbicides applied in the early post-emergence stage were more intensive than those detected in the pre-emergence treatments. However, the damage caused by the double dose of isoxaflutol + thiencarbazone-methyl and by the split treatment with nicosulfuron remained below 10%. The symptoms became somewhat more severe at the 2nd scoring date. Among the post-emergence treatments the maize genotypes had the least tolerance of the mesotrione + nicosulfuron combination of active ingredients, where the double quantities resulted in 13–14% damage in average.

  • Describing Fusarium diseases on maize in 2013 using data from several production sites
    60-64
    Views:
    206

    As in other parts of the world, the frequency of weather extremes has increased greatly in Hungary in recent years. This means that maize production is faced with greater risks from all aspects: nutrient replacement, irrigation, plant protection. This is especially true of fusarium diseases. In a continental climate, the pathogens causing the most serious problems are species belonging to the Fusarium genus. They infect the ears, which – besides reducing the yield – poses considerable risk to both human and animal health due to the mycotoxins produced by them. Depending on which Fusarium species are dominant at a given location, changes can be expected in the level of infection and in the quality deterioration caused by the mycotoxins they produce. Fusarium spp. not only damages the maize ears but when pathogen attacks the stalk, the plant dies earlier, reducing grain filling and resulting in small, light ears. In addition, the stalks break or lodge, resulting in further yield losses from ears that cannot be harvested. The degree of infection is fundamentally determined by the resistance traits of the maize hybrids, but also a great role in that region Fusarium species composition as well.

  • Sensitivity of maize to herbicides in experiments in Martonvásár in 2015
    47-52
    Views:
    217

    The phytotoxic effect of herbicides applied post-emergence was investigated in a herbicide sensitivity experiment set up on parental maize genotypes in Martonvásár. A total of 48 Martonvásár inbred lines and 12 single line crosses were included in small-plot experiments set up in two replications. Ten herbicides were applied at the normal authorised rate and at twice this quantity. Compounds intended for pre-emergence application were applied when maize was in the 3–4-leaf stage and post-emergence herbicides in the 7–8-leaf stage of development. The extent of phytotoxicity was scored two weeks after treatment. Some of the herbicides tested are not authorised for use in seed production fields, but it is important to know how the parental genotypes respond to all types of herbicides. Phytotoxic symptoms of varying intensity were only observed on a third of the 60 parental genotypes examined; the majority of the lines exhibited no reaction to any of the herbicides. Averaged over the 60 genotypes the level of phytotoxic damage was less than 10% for the single dose. When the double dose was applied somewhat more severe damage was induced by products containing Mesotrione + Nicosulfuron or Foramsulfuron + Isoxadifen-ethyl, but this was still below 15%. The herbicide dose had a three times stronger influence on the intensity of the symptoms than the type of herbicide. With the exception of Topramezone, there was a significant difference between the effects of the normal and double doses. The greatest dose effect differences, in decreasing order, were observed for Mesotrione + Nicosulfuron, Foramsulfuron + Isoxadifen-ethyl. Nicosulfuron and Mesotrione + Terbutylazine. The Mesotrione + Terbutylazine active ingredient combination only caused mild (<10%) symptoms on a total of 11 genotypes, while the Mesotrione + Nicosulfuron combination induced more severe phytotoxic symptoms on 26 lines. When Nicosulfuron was applied alone it caused milder symptoms on fewer genotypes than in combination with Mesotrione. Among compounds of the sulphonyl-urea type, the least severe symptoms on the fewest genotypes were recorded in the case of Prosulfuron.

  • Studies on the Fusarium stalk rot infection of the maize genotypes using the Findex percentage and a computerised image analysis program
    45-51
    Views:
    114

    In a continental climate, the pathogens causing the most serious problems are species belonging to the Fusarium genus. When the pathogen attacks the stalk, the plant dies earlier, reducing grain filling and resulting in small, light ears. In addition, the stalks break or lodge, resulting in further yield losses from ears that cannot be harvested. During the three years of the experiment, 14 inbred lines were examined. The genotypes were sown in a two-factor split-plot design with four replications, with the genotypes in the main plots and four treatments in the subplots: two Fusarium graminearum isolates (1. FG36, 2. FGH4), 3. sterile kernels, 4. untreated control. The results experiments showed significant differences between the genotypes for resistance to fusarium stalk rot. Among the inbred lines the best resistance to fusarium stalk rot was exhibited by P06 and P07, both of which were related to ISSS. The precision and sensitivity of disease evaluations carried out visually and using image analysis software were compared in the experiment, and with two exceptions the CV values were lower for the image analysis. As the CV for measurements can be considered as a relative error, it can be stated that image analysis is the more precise of the two methods, so this technique gives a more accurate picture of the extent of stalk rot. The extent of stalk rot developing in response to natural infection is extremely environment-dependent, so the use of artificial inoculation is recommended for selection trials. 

  • Study on the cold tolerance of maize (Zea mays L.) inbred lines in Phytotron
    41-45
    Views:
    100

    Maize has come a long way from the tropics to the temperate zone. In the beginning, the spreading of maize was prevented by its sensitivity to cold. Improved cold tolerance at germination is one of the most important conditions for early sowing. The advantage of cold tolerant hybrids is that they can be sown earlier, allowing longer growing seasons and higher yields, due to the fact that the most sensitive period in terms of water requirements, flowering, takes place earlier, i.e. before the onset of summer drought and heat.

    In Martonvásár, continuous research is carried out to improve the cold tolerance of maize. In the present experiment, the cold tolerance of 30 genetically different maize inbred lines was investigated in a Phytotron climate chamber (PGV-36). The aim of our research is to identify cold tolerant lines that can be used as parental components to produce proper cold tolerant hybrids and/or as sources of starting materials for new cold tolerant inbred lines. After observing and evaluating changes in phenological traits under cold-test, the results of the cold-tolerance traits of interest have been used to highlight several inbred lines that could be good starting materials for further research on genetic selection for cold tolerance.

  • Comparing the yield of maize (Zea mays L.) hybrids in organic and conventional agriculture
    13-17
    Views:
    166

    The European Green Deal was published by the European Commission in 2019. The main aim of the program is to reach net zero greenhouse gas emissions by 2050, making Europe the first climate-neutral continent in the world. To achieve this, criteria are also set for agriculture: increasing the share of land under organic farming to 25%, reducing the use of fertilisers and pesticides. However, the benefits of organic farming are widely debated. The aim of our study was to compare the yield of maize (Zea mays L.) hybrids bred in Martonvasar in two different cropping environments. The silage yields of 20 different maize hybrids were evaluated in a three replicate small plot experiment in an organic field and an adjacent conventional field. The average green mass yield of the hybrids was 36,58 t ha-1 in the organic field and 43,03 t ha-1 in the conventional. The green mass yield in the organic area was 20% lower than in the conventional area, and the dry matter yield and digestible dry matter yield were about 18% lower. Hybrids of different maturity groups responded differently to organic cultivation. The yields of early hybrids decreased more and late hybrids less in the organic farming compared to the conventional production.

  • Changes in the herbicide tolerance of maize genotypes in wet and dry years
    124-127
    Views:
    90

    The tolerance of 15 inbred maize lines grown on chernozem soil with forest residues in Martonvásár was tested against herbicides applied post-emergence in two dry, warm years (2003 and 2011) and in two cool, wet years (2004 and 2010). The herbicides mesotrione + terbutylazine, nicosulfuron and dicamba were applied to maize inbred lines in the 7–8-leaf stage at the maximum dose authorised for practical use and at double this rate. The plants were scored for the intensity of visible phytotoxic symptoms 14 days after treatment.
    The level of phytotoxicity observed in dry, warm years was 5.14%, averaged over the lines, herbicides and rates. The intensity of visible symptoms was almost 2.5 times as great in cool, wet years (12.76 %).
    Averaged over the four years, the lines and the rates, the least damage was caused by dicamba (5.77 %), followed by mesotrione + terbutylazine (7.23 %). The most severe symptoms were induced by nicosulfuron (16.17 %). This could be attributed to the fact that some of the inbred lines were extremely sensitive to herbicides, especially those of the sulfonylurea type.
    A difference of more than 1.5 times was observed between the two doses, but the correlation between the concentration and the severity of the visual symptoms was not strictly linear. Compared to the normal dose (100 %) the double rate resulted in a 162.5% increase in symptom severity. In most cases plants treated with the normal dose were symptom-free or only exhibited a low level of phytotoxicity.

  • Changes of the fatty acid composition of sprouts during germination
    89-92
    Views:
    127

    During our research we studied the fat content and fatty acid composition during the germination and sprouting periods of the most important sprouts: wheat, lentil, alfalfa, radish and sunflower seed. In this article we present our research results during this sprouting study. The concentration of the saturated fatty acids (palmitic acid, stearic acid) decreased, the concentration of the unsaturated fatty acids increased during germination, but the tendency was not so high than was published in the literature.

  • Challenges and limtations of site specific crop production applications of wheat and maize
    101-104
    Views:
    140

    The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.

  • Grain Moisture of Maize Hybrids in Different Maturity Groups at Various Harvesting Dates
    24-25
    Views:
    100

    The experiments were designed to determine the extent to which late harvesting helped to achieve low grain moisture content. The grain moisture contents of 24 hybrids from each of four different maturity groups were recorded during the last decade of September and the first decade of November over a period of three years (1999-2001).
    The data indicated that late harvesting led to a substantially smaller difference between the hybrids. While in late September the difference between the grain moisture content of the earliest (FAO 200) and latest (FAO 500) hybrids was 8.9%, this value dropped to 1.5% over the average of three years when measurements were made in early November. With the exception of the earliest group, the grain moisture content in all the maturity groups declined during October. The later the hybrid, the greater the decline.
    This change in the grain moisture content during October exhibited a considerable year effect. When the weather in October was warm, with little rain, the decrease was greater, while in cool, wet years the grain moisture content declined to a lesser extent, or in some cases even increased.

  • Field Tests on the Herbicide Tolerance of Various Maize Genotypes
    21-23
    Views:
    82

    Investigations were made in Martonvásár on the herbicide tolerance of 22 inbred maize lines and 3 parental single crosses when treated with one herbicide applied after sowing, prior to emergence, and with seven applied post-emergence in the 6-8-leaf stage. Visible damage was scored 14 days after the treatment.
    An analysis of the phytotoxic effects led to the conclusion that a single dose of the tested herbicides did not cause any damage to the genotypes investigated, with the exception of one inbred line, which was extremely sensitive to herbicides of the sulphonyl carbamide type and moderately sensitive to both rates of dicamba. In many cases, a double dose of the herbicides caused mild or moderate symptoms on the maize lines.