Articles

Evaluation of the synergistic effect of yeast and Chicory-inulin on rumen fermentation parameters and estimation of methane emission

Published:
2024-12-01
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Bett Kipkorir, . J., Migwi, P. K., & Ondiek, J. O. (2024). Evaluation of the synergistic effect of yeast and Chicory-inulin on rumen fermentation parameters and estimation of methane emission. Acta Agraria Debreceniensis, 2, 13-18. https://doi.org/10.34101/actaagrar/2/13864
Abstract

Probiotics and prebiotics are feed additives that have been extensively utilised in animal nutrition for a considerable duration. However, only some studies have investigated their synergistic effects on rumen fermentation parameters and their role in minimizing methane emission. Therefore, this study examined the impact of combining chicory-inulin with yeast (Saccharomyces cerevisiae) on rumen fermentation parameters and methane emissions in weaned dairy goats. The feeds were formulated into eight diets and offered to 24 Saanen×Toggenburg crossbred weaned female dairy goats weighing 14±0.5 Kg in a Completely Randomized Design with a (4x2) factorial arrangement. The diets were Rhodes grass hay and chicory supplementation at four levels: 0, 10, 20, 20, and 30% as the main effects and with (+) and without yeast (-) yeast as interaction levels. The findings indicated that the inclusion of yeast and Chicory had a significant effect (p<0.05) on rumen pH, ammonia nitrogen concentrations, production of volatile fatty acids), and estimated methane emission. The highest pH was recorded in T1- with 7.27. It was followed closely by T1+ with 6.73. T1+ recorded the highest methane(39.67 mmol/L), while T4- had the lowest (32.42 mmol/L). This study concludes that Chicory-inulin has prebiotic properties by maintaining pH levels and affecting amounts of ammonia nitrogen. The lack of a significant interaction effect between yeast and Chicory in methane emission implies that their combined influence may not significantly affect methane emissions in the current study's experimental settings.

References
  1. Amin, A.B.; Mao, S. (2021): Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: A review. Animal nutrition, 7(1), 31–41. https://doi.org/10.1016/j.aninu.2020.10.005
  2. Armato, L.; Gianesella, M.; Morgante, M.; Fiore, E.; Rizzo, M.; Giudice, E.; Piccione, G. (2016): Rumen volatile fatty acids× dietary supplementation with live yeast and yeast cell wall in feedlot beef cattle. Acta Agriculturae Scandinavica, Section A—Animal Science, 66(2), 119–124. https://doi.org/10.1080/09064702.2016.1272628
  3. Chung, Y.H.; Walker, N.D.; McGinn, S.M.; Beauchemin, K.A. (2011): Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows. Journal of Dairy Science, 94(5), 2431–2439. https://doi.org/10.3168/jds.2010-3277
  4. Dias, A.L.G.; Freitas, J.A.; Micai, B.; Azevedo, R.A.; Greco, L.F.; Santos, J.E.P. (2018): Effect of supplemental yeast culture and dietary starch content on rumen fermentation and digestion in dairy cows. Journal of Dairy Science, 101(1), 201–221. https://doi.org/10.3168/jds.2017-13241
  5. Ding, G.; Chang, Y.; Zhao, L.; Zhou, Z.; Ren, L.; Meng, Q. (2014): Effect of Saccharomyces cerevisiae on alfalfa nutrient degradation characteristics and rumen microbial populations of steers fed diets with different concentrate-to-forage ratios. Journal of Animal Science and Biotechnology, 5(1), 1–9.
  6. Ganai, A.M.; Sharma, T.; Dhuria, R.K. (2015): Effect of yeast (Saccharomyces cerevisiae) supplementation on ruminal digestion of bajra (Pennisetum glaucum) straw and bajra straw-based complete feed in vitro. Animal Nutrition and Feed Technology, 15(1), 145–153.
  7. Gibson, G.R.; Scott, K.P.; Rastall, R.A.; Tuohy, K.M.; Hotchkiss, A.; Dubert-Ferrandon, A., ... & Buddington, R. (2010): Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. Funct. Foods, 7(1), 1–19. https://doi.org/10.1616/1476-2137.15880
  8. Gong, Y.L.; Liao, X.D.; Liang, J.B.; Jahromi, M.F.; Wang, H.; Cao, Z.; Wu, Y.B. (2013): Saccharomyces cerevisiae live cells decreased in vitro methane production in the intestinal content of pigs. Asian-Australasian Journal of Animal Sciences, 26(6), 856. https://www.animbiosci.org/journal/view.php?doi=10.5713/ajas.2012.12663
  9. Guedes, C.M.; Gonçalves, D.; Rodrigues, M.A.M.; Dias-da-Silva, A. (2008): Effects of a Saccharomyces cerevisiae yeast on ruminal fermentation and fibre degradation of maize silages in cows. Animal Feed Science and Technology, 145(1-4), 27–40. https://doi.org/10.1016/j.anifeedsci.2007.06.037
  10. Janssen, P.H. (2010): Influence of hydrogen on rumen methane formation and fermentation balances through microbial
  11. growth kinetics and fermentation thermodynamics. Animal
  12. Feed Science and Technology, 160(1-2), 1–22. https://doi.org/10.1016/j.anifeedsci.2010.07.002
  13. Jonova, S.; Ilgaza, A.; Zolovs, M. (2021): The impact of inulin and a novel synbiotic (yeast Saccharomyces cerevisiae strain 1026 and inulin) on the development and functional state of the gastrointestinal canal of calves. Veterinary Medicine International, 2021. https://doi.org/10.1155/2021/8848441
  14. Lepczyński, A.; Herosimczyk, A.; Barszcz, M.; Ożgo, M.; Michałek, K.; Grabowska, M.; Skomiał, J. (2021): Diet supplemented either with dried chicory root or Chicory inulin significantly influence kidney and liver mineral content and antioxidative capacity in growing pigs. Animal, 15(2), 100129.
  15. Liu, H.; Ivarsson, E.; Dicksved, J.; Lundh, T.; Lindberg, J.E. (2012): Inclusion of Chicory (Cichorium intybus L.) in pigs' diets affects the intestinal microenvironment and the gut microbiota. Applied and environmental microbiology, 78(12), 4102–4109. https://doi.org/10.1128/AEM.07702-11
  16. Mahmoud, Y.M. (2021): Effect of Supplementation of Dried Chicory (Cichorium Intybus L.) Leaves in Diets on Performance of Dairy Goats. Egyptian Journal of Nutrition and Feeds, 24(1), 1–11.
  17. Malmuthuge, N.; Guan, L.L. (2016): Gut microbiome and omics: a new definition to ruminant production and health. Animal Frontiers, 6(2), 8–12. https://doi.org/10.2527/af.2016-0017
  18. Mangwe, M.C. (2020): Strategic management of Chicory (Cichorium intybus L.) for improved milk quality and nitrogen utilization in dairy farm systems: A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy at Lincoln University (Doctoral dissertation, Lincoln University).
  19. Masanetz, S.; Wimmer, N.; Plitzner, C.; Limbeck, E.; Preißinger, W.; Pfaffl, M.W. (2010): Effects of inulin and lactulose on the intestinal morphology of calves. Animal, 4(5), 739–744. https://doi.org/10.1017/S1751731109991728
  20. Mathew, N.; Kalyanasundaram, M. (2001): A high-performance liquid chromatographic method for the estimation of diethylcarbamazine content in medicated salt samples. Acta tropica, 80(2), 97–102. https://doi.org/10.1016/S0001-706X(01)00163-2
  21. Minneé, E.M.K.; Waghorn, G.C.; Lee, J.M.; Clark, C.E.F. (2017): Including Chicory or plantain in a perennial ryegrass/white clover-based diet of dairy cattle in late lactation: Feed intake, milk production, and rumen digestion. Animal Feed Science and Technology, 227, 52–61.
  22. Moss, A.; Jouany, J.P.; Newbold, J. (2000): Methane production by ruminants: its contribution to global warming. In Annales de zootechnie. Vol. 49, No. 3, pp. 231–253. https://doi.org/10.1051/animres:2000119
  23. Patel, S.; Goyal, A. (2012): The current trends and future perspectives of prebiotics research: a review. 3 Biotech, pp. 2, 115–125.
  24. Roodposhti, P.M.; Dabiri, N. (2012): Effects of probiotic and prebiotic on average daily gain, fecal shedding of Escherichia coli, and immune system status in newborn female calves. Asian-Australasian Journal of Animal Sciences, 25(9), 1255. https://doi.org/10.5713/ajas.2011.11312
  25. Samal, L.; Behura, N.C. (2015): Prebiotics: an emerging nutritional approach for improving gut health of livestock and poultry. Asian Journal of Animal and Veterinary Advances, 10(11), 724–739. DOI: 10.3923/ajava.2015.724.739
  26. Samanta, A.K.; Jayapal, N.; Senani, S.; Kolte, A.P.; Sridhar, M. (2013): Prebiotic inulin: Useful dietary adjuncts to manipulate the livestock gut microflora. Brazilian Journal of Microbiology, 44, 1–14. https://doi.org/10.1590/S1517-83822013005000023
  27. Tripathi, M.K.; Karim, S.A. (2011): Effect of yeast cultures supplementation on live weight change, rumen
  28. fermentation, ciliate protozoa population, microbial hydrolytic enzymes status and slaughtering performance of growing
  29. lamb. Livestock Science, 135(1), 17–25. https://doi.org/10.1016/j.livsci.2010.06.007
  30. Tzortzis, G.; Goulas, A.K.; Gee, J.M.; Gibson, G.R. (2005): A novel galactooligosaccharide mixture increases the bifidobacterial population numbers in a continuous in vitro fermentation system and in the proximal colonic contents of pigs in vivo. The Journal of Nutrition, 135(7), 1726–1731.
  31. Umucalilar, H.D.; Gulsen, N.; Hayirli, A.; Alatas, M.S. (2010): Potential role of inulin in rumen fermentation. Revue Méd. Vét, 161(1), 3–9.
  32. Uyeno, Y.; Shigemori, S.; Shimosato, T. (2015): Effect of probiotics/prebiotics on cattle health and productivity. Microbes and Environments, 30(2), 126–132. https://doi.org/10.1264/jsme2.ME14176
  33. Wang, Y.; Nan, X.; Zhao, Y.; Jiang, L.; Wang, H.; Hua, D.; ... & Xiong, B. (2021): Dietary supplementation with inulin improves lactation performance and serum lipids by regulating dairy cows' rumen microbiome and metabolome. Animal Nutrition, 7(4), 1189–1204. https://doi.org/10.1016/j.aninu.2021.09.007
  34. Xiao, J.X.; Alugongo, G.M.; Chung, R.; Dong, S.Z.; Li, S.L.; Yoon, I; ... & Cao, Z.J. (2016): Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community. Journal of Dairy Science, 99(7), 5401–5412. https://doi.org/10.3168/jds.2015-10563
  35. Xu, Q.; Qiao, Q.; Gao, Y.; Hou, J.; Hu, M.; Du, Y.; ... & Li, X. (2021): Gut microbiota and their role in health and metabolic disease of dairy cow. Frontiers in Nutrition, 8, 701511. https://doi.org/10.3389/fnut.2021.701511
  36. Zeitz, J.O.; Ineichen, S.; Soliva, C.R.; Leiber, F.; Tschuor, A.; Braun, U.; ... & Clauss, M. (2016): Variability in microbial population and fermentation traits at various sites within the forestomach and along the digestive tract as assessed in goats fed either grass or browse. Small Ruminant Research, 136, 7–17. https://doi.org/10.1016/j.smallrumres.2015.12.029
  37. Zhou, M.; Hunerberg, M.; Chen, Y.; Reuter, T.; McAllister, T.A.; Evans, F.; ... & Guan, L.L. (2018); Air-Dried Brown Seaweed, &ITAscophyllum nodosum&IT, Alters the Rumen Microbiome in a Manner That Changes Rumen Fermentation Profiles and Lowers the Prevalence of Foodborne Pathogens. MSPHERE, 3(1). https://doi.org/10.1128/msphere.00017-18
  38. Zhu, W.; Wei, Z.; Xu, N.; Yang, F.; Yoon, I.; Chung, Y.; ... & Wang, J. (2017). Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low quality forage. Journal of Animal Science and Biotechnology, 8(1), 1–9.