Search
Search Results
-
GC-MS studies to map mechanistic aspects of photolytic decomposition of pesticides
11-16Views:99Transformation of pesticides in the environment is a highly complex process affected by different factors. Both biological and physical-chemical factors may play a role in the degradation, whose ratio depends on the actual environmental conditions.
Our study aims to reveal specific details of photolytic degradation of pesticides as important soil contaminants. Significance of these studies is enhanced by the fact that pesticide decomposition may contribute to soil degradation, and have harmful biological effects by degrading to toxic products. The toxicity of the examined pesticides is well known, however very little information is available regarding their natural degradation processes, the quality, structure and biological impact of the degradation products.
The photolytic degradation of frequently applied pesticides of distinctive types (acetochlor – acetanilide, simazine – triazine, chlorpyrifos – organophosphate, carbendazim – benzimidazole) was investigated. A special, immerseable UV-light source was applied in order to carry out photodegradation. The degradation processes were followed by thin layer chromatography (TLC) and mass spectrometry coupled with gas chromatography (GC/MS). EI mass spectrometry was used to identify the degradation species.
Each of the studied pesticides underwent photolytic decomposition, and the detailed mechanism of photolytic transformation was established. At least four degradation species were detected and identified in each case. Loss of alkyl, alkyloxy, amino-alkyl and chloro groups might be regarded as typical decomposition patterns. Deamination occurred at the last stage of decomposition. -
Assessment of Environmental Susceptibility/Vulnerability of Soils
62-74Views:100Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
Soil resources are threatened by the following environmental stresses:
– soil degradation processes;
– extreme moisture regime;
– nutrient stresses (deficiency or toxicity);
– environmental pollution.
Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
The efficient control of these processes necessitates the following consecutive steps:
• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
• elaboration of efficient technologies for the „best” control alternatives (best management practice).
Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society. -
Grassland association stock of plants the examination of the regeneration of a construction
185-191Views:79Due to the drastic change in using the nature like grassland association (one-sided overgrazing – one mowing per a year), by the third year of the experiment in every area, where overgrazing stopped, independently on second sowing and nutrient resupply, Borhidi degradation degree decreased. In the areas where overgrazing with large animal density (sheep) continued, degradation degree was 3.4–5.0 by the third year of the experiment, and Hordeum murinum, which causes animal healthy problems, appeared massively.
-
Evaluation of Soil Degradation Based on High Resolution Remote Sensing Data
145-148Views:104Soil salinity is the main problem of soil degradation in the Grate Plain with cultivated area of 20% affected. Its influence is accelerated on the water managed and irrigated lands. Remote sensing can significantly contribute to detecting temporal changes of salt-related surface features. We have chosen a farm where intensive crop cultivation takes place as a test site as soil degradation can be intensive as a result of land use and irrigation. In order to evaluate soil salt content and biomass analysis, we gathered detailed data from an 100x250 m area. We analyzed the salinity property of the samples. In our research we used a TETRACAM ADC multispectral camera to take high resolution images (0,2-0,5 m) of low altitude (300-500 m). A Normalized Vegetation Index was computed from near infrared (750-950 nm) and red (620-750 nm) bands. This data was compared with the samples of investigated area. Analyzing the images, we evaluated image reliability, and the connection between the bands and the soil properties (pH, salt content). A strong correlation observed between NDVI and soil salinity (EC) makes the multispectral images suitable for construction of salinity map. A further strong correlation was determined between NDVI and yield.
-
Sequence stability at SSR, ISSR and mtDNA loci of common millet (Panicum miliaceum) from the middle ages
10-19Views:108Seed remains of medieval millet, recovered from a 15th century layer (King’s Palace, Budapest, Hungary), showed reddish yellow grain color after rehydrating on tissue culture medium that was close to grain color of modern cultivar Omszkoje. aDNA of medieval c. millet was extracted successfully, analyzed and compared to modern common millets by ISSR, SSR, CAPS and mtDNA. Analyses of fragments and sequences revealed
polymorphism at seven ISSR loci (22 alleles) and at the 5S-18S rDNA locus of mtDNA. CAPS analysis of the 5S-18S rDNA fragment revealed no SNPs in the restriction sites of six endonucleases TaqI, BsuRI, HinfI, MboI, AluI and RsaI. Sequence alignments of the restriction fragments RsaI also revealed
consensus sequence in the medieval sample compared to a modern variety. Morphological characterization of twenty common millet (Panicum miliaceum L., 2n=4×=36) cultivars and landraces revealed four distinct clusters which were apparently consistent with the grain colors of black, black and brown, red, yellow, and white. In the comparative AFLP, SSR and mtDNA analysis modern millet cv. ‘Topáz’ was used. AFLP analysis revealed that extensive DNA degradation had occurred in the 4th CENT. ancient millet resulting in only 2 (1.2%) AFLP fragments (98.8% degradation),
compared to the 15th CENT. medieval millet with 158 (40%) fragments (60% degradation) and modern millet cv. ‘Topáz’ with 264 fragments (100%). Eight AFLP fragments were sequenced after reamplification and cloning. Microsatellite (SSR) analysis at the nuclear gln4, sh1, rps28 and rps15 loci of the medieval DNA revealed one SNP (single nucleotide polymorphism) at the 29th position (A to G) of rps28 locus compared to modern millet.
Mitochondrial (mtDNA) fragment (MboI) amplified at the 5S-18S-rDNA locus in the medieval millet showed no molecular changes compared to modern millet. The results underline the significance of survived aDNA extraction and analysis of excavated seeds for comparative analysis and molecular reconstruction of ancient and extinct plant genotypes. An attempted phenotype reconstruction indicated that medieval common millet showed the closest morphological similarity to modern millet cultivar Omszkoje. -
Pre-treatment of wastes containing keratin in industrial conditions
59-64Views:160The aim of the research was a development of a featherdegradation technology in industrial circumstances. During the experiments we determined the parameters of the critical environmental and technological limitation factors. Because of the high keratin-content the degradation (and composting) of the feather is difficult. With the developed technology huge mass of feather can be used fast and easily in biogas production and in the adjustment of the optimal element ratio of biomass. The industrial experiments were implemented in a 6m3 heatable double-walled
tank with stirring-shovels and aeration-system. The degradation process was followed with extinction measurements.
According to the experiments that were done the best results were given at the case which was heat-treated at 70°C, was injected with 1% bacteria concentration, and where 1:3 feather:water ratio was set if we consider the effectiveness of degradation and the hydraulical retention time. -
Optimized balance between crop productivity, restoration and maintenance of vital soil functions and soil carbon sequestration and storage – the SmartSOIL (FP7) project
213-215Views:120Soils provide the most indispensable function of supporting the production of food and feed for a growing human population. At the same time they provide a range of regulating and supporting functions related to climate change and removal of greenhouse gases. The majority of the soil functions are closely linked to the flows and stocks of soil organic carbon (SOC); low levels of both flows and stocks may seriously interfere with several of the essential soil functions and thus affect the ecosystem services that soils deliver. Soil degradation is considered a serious problem in Europe and a large part of the degradation is caused by intensive cultivation practices in agriculture. The aim of the SmartSOIL project is to link the results of different scientific fields through a holistic and multidisciplinary approach and as a result develop a decision making tool contributing to sustainable development.
-
Long-term effect of soil management on the carbon-dioxide emission of the soil
515-527Views:135CO2 emission from soils is one of the most important elements of the global carbon cycle, thus it has crucial rule in climate change. Each soil cultivation operation intervenes in the microbiological life of the soil, hence tillage is a factor through that the processes taking place in soil can be controlled. During the last decades, the organic material content of agricultural soils decreased to the half due to the intensive management resulting in the degradation of natural soil fertility. While intensive, plough-based tillage can cause soil degradation and erosion, the physical, chemical and biological status of the soil can be significantly improved through the application of conservation tillage methods. The results of long-term experiments prove that soil protective tillage enhances the enrichment of organic matter in the top layer of the soil. In order to reveal the role of tillage systems in CO2 emission from the soil, regular measurements were carried out in the plots with conventional and reduced tillage of the soil cultivation experiment of Research Institute of Karcag. Anagas CD 98 and Gas Alert Micro 5w infrared gas analysers were used to measure CO2-concentrations, and a specially developed method (consisting of a frame and a bowl) was applied to delimitate the measuring area. Most of the measurements were done on stubbles after harvest in order to exclude root respiration. The weather conditions of the examined 10 years were very changeable providing a good chance to compare them to each other. We found the tillage operations resulting in higher emission values in both tillage systems. On stubbles higher and more even emission was characteristic to reduced tillage due to the lower degree of soil disturbance and higher soil moisture content.
-
Urgent agricultural issues of soil protection
169-172Views:153The primary aim of this study is to draw attention to the importance of legal problems of soil protection. The basis for my study is the ombudsman’s 2016 principle of soil protection. This resolution summarizes the most pressing soil protection measures in 15 points that need to be taken as soon as possible to preserve soil resources. To narrow the wide range of topics, I will examine three points: (1) preservation of soil resources, (2) soil sealing, (3) brownfield instead of greenfield. Hungary is in a special position concerning this most ancient natural resource, as only 11% of all the land covered area of Earth consists of soil, the EU average is less than 30%, while in Hungary it is more than 60%. Despite the existing protective legal requirements, soil degradation is a constant issue. The persistence of population growth spells the need for more arable land, but as a result of the stressful impacts caused by people we are running out of useable topsoil.
Assessing both the short and long term process of land reclamation, it can be stated that more and more farmland becomes permanently and imperviously covered for other purposes each year, and as the arable land area decreases, the impervious surface area grows despite all respective decisions, regulations and prohibitions.
-
Global Issues of RangelandManagement
39-46Views:120Rangelands occupy about 50% of the world’s land area. They are ecologically and economically as important as rain forests and in even greater danger of degradation and disappearance. This paper reviews the definitions and distribution of rangelands and describes their global environmental importance in terms of erosion control, carbon storage and methane emission. Condition and degradation of rangelands are defined and discussed and it is argued that soil protection and carbon storage can be increased and methane emission per animal decreased by conservative use and improvement of rangelands, whilst at the same time alleviating hunger and malnutrition in developing countries. It is concluded that policies should be adopted by national governments and international deve-lopment programs to conserve and improve rangelands.
-
Effect of Silver willow “Russian olive” (Elaeagnus angustifolia) on extensive sheep management
157-162Views:105We carried out a study in the Karcag Research Institute, which affected the areas of narrow-leaved silver willow. In the framework of this research, we performed Balázs's coenology, and thus established the degree of Borhidi degradation, which resulted in the fact that the areas of the silver willow were degraded practically irreversibly, the diversity of the grassland has decreased. We consider it very important to study these grassland areas of silver willows, as they can provide an additional fodder base for sheep grazing, which will also increase the sustainability of the grassland. The obtained soil analysis results show that the soil samples of the silver willow areas are richer in nitrogen (p-value: 0.006) and phosphorus (p-value: 0.003) than the examined control area.
-
Methodological development of the determination of the compost mixture ratio
29-33Views:95The mixing rate of the compost raw materials basically determines the procedure of degradation. In most cases, in practice the real mixing ratio is not equal with the counted ratio – which based on the C/N ratio – and the check of the fulfilled mixing is not possible.
The homogeneity of the prism is also one of the fundamentals of the effective degradation process. There is no available method to determine the homogeneity of the compost prism.
During our research we examined the reflectance values of different compost mixtures where sewage sludge and rape-straw were used as raw materials.
According to our results we built up a regression model which gives the ability to determine the mixing rate (in 5% margin of error) and makes possible to check the homogeneity of the prism together with the access of immediate action. -
Analysis of aerobic biological waste treatment methods especially in the case of composting
33-37Views:165In recent years the regulations of the EU unambiguously determine that the biodegradable wastes should be used in agriculture. The characteristics of the organic wastes in most cases make the direct utilization impossible, they need pre-treatment before use. One treatment solution of these wastes is composting. During composting the organic wastes lose their hazardous characteristics and we gain a final product, the compost, which can be used in agriculture as organic fertilizer. The main conditions of effective composting are the follow and understand of the degradation process. During our research we examined different measuring methods (gas concentration and reflectance measurements, temperature mapping) that makes a cost and time effective possibility to directly analyze the degradation.
-
Soil – Environment – Sustainability
331-337Views:197The future and life quality of human society depends primarily on the success of the sustainable use of natural resources: the geological strata–soil–water–biota–near surface atmosphere continuum. Soil is the most significant conditionally renewable natural resource in our Earth’s system, with three unique properties: multifunctionality; fertility/ productivity; resilience. In the case of rational land use and precise soil management soil does not disappear, and its desirable „quality” does not decrease considerably, irreversibly and unavoidably. Its renewal, however, requires continuous care and permanent activities.
Consequently, the prevention, elimination or moderation of soil degradation processes and extreme hydrological situations (the two main factors limiting desirable soil multifunctionality) with rational land use and soil management are the key factors and priority tasks of sustainable development on each level and in each phase of the decisionmaking process. -
Comparative examination of the tillage systems of maize on meadow chernozem soil
21-24Views:199Maize production plays a major role in the agriculture of Hungary. Maize yields were very variable in Hungary in the last few decades. Unpredictable purchase prices, periodical overproduction, the increasing occurrence of weather extremities, the uncertain profit producing ability, the soil degradation processes (physical, chemical and biological degradation) and the high expenses are risk factors for producers. Due soil tillage, there is an opportunity to reduce these risks. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Centre for Agricultural and the KITE Plc., various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok country in 2012 and 2013. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively.
In general, our findings show, that strip-tillage and subsoiling can be alternative tillage systems beside moldboard ploughing on meadow chernozem soils in Hungary.
-
Ecological Conditions of Agricultural Land Use in Transcarpathia
190-194Views:94The unbalanced anthropogenic effects for several decades resulted in significant technogen damages in the ecosystem of Ukraine. Excessive land development, including the use of slopes, effected the disintegration of the natural balance of lands – arable-lands, meadows, forests, and watershed areas – producing quite a negative effect on the landscape’s nature itself. It has to be stressed that according to other indexes, too, agricultural lands show a tendentious deterioration.
Erosion, caused by water and wind, is one of the most influential factors in the degradation of agricultural soils and in the reduction of the productiveness of benefital lands. Nowadays the degree erosion became significant and it directly endangers the existence of the soil which is a principal chain-link of the agricultural cultivation as well as an irreplaceable element of the biosphere.
The social and political changes in Ukraine’s life demand fundamental modernization in the land utilization both in ecological and in economical aspects. However, these aims can be realized only if, during the developments, we base on the up-to-date results of agronomics, and we do further research in the relations of agricultural land use and environmental protection. According to the latest theories, rational and environmental-safe agricultural production relates to the optimum correlation of the natural- and agricultural- ecosystems as well as to the reconstruction of agricultural areas built on the basis of environmental protection. -
Mitigation of the effect of secondary salinization by micro soil conditioning
115-119Views:226This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.
-
Supplementary botanical examinations for modelling the grass production of the great pasture of Hajdúbagos
17-21Views:74Our botanical survey at the great pasture of Hajdúbagos is a part of a broad research that aims to predict the production of the grass at the given area. As the mentioned pasture is a nature conservation area, the usage of artificial fertilizers or other classic grassland management methods in its handling are prohibited. Thus grazing is an important tool for the management of this area, however the not suitably regulated grazing order and the poorly calculated carrying capacity cause serious problems at some parts of the pasture. The prediction of the grass yield is essential to
avoid both over- and both under-grazing and for determining the optimal number of the grazing animal stock and the grazing method, thus the most suitable management strategy.
The potential grass yield is easily calculable with a computer model that will be established as a basis for determining the grass production. For the sake of getting an accurate view of the plant associations of the pasture, we created examination quadrates and determined all plant species found in the quadrates. After plant determination, we compiled a coenological table in which we marked besides the scientific name and families, the life forms of each species that refer to the structure, morphology and thus the adaptability of plants to their environment. We determined the
TWR, so the thermoclimate, water and soil reaction values, the nature conservation values, as well as the covering values of each plant species (DB), and the total coverage of the examination quadrates (B%).
According to the covering values, grasses proved to be characteristic plants at the examined pasture, thus we need to consider them influential in calculating the animal carrying capacity and with the rest of the information, we need to supply the model.
The life forms and TWR indicators, all together with the nature conservation values provide further important data to the development of the management suggestion of the protected pasture. By examining these values to different parts of the area, we could get an exact view on the measure of the degradation effects. This promotes the determination of grazing methods and the forming of the boundaries of certain pasture sections, to avoid those harmful anthropogenic effects that seriously endanger this extensive sandy pasture. -
Study of the biodegradation of slaughterhause feather waste by Bradford method
77-81Views:166The 15–20% of the by-products of meat- and poultry industry – that unsuitable for human consumption – contains keratin. The slaughter technology of poultry produces large amount of poultry feather with 50–70% moisture content. This means more million tons annually worldwide (Williams et al., 1991; Hegedűs et al., 1998). The keratin content of feather can be difficulty digested, so physical, chemical and/or biological pre-treatment is needed in practice, which has to be set according to the utilization method. The microbiological and enzymatic degradation of feather to soluble protein and amino acids is a very favourable and relatively cheap opportunity to produce valuable products of the resulting feather. Our applied treatments were based on the determination of the most effective method, which is able to follow the biodegradation of waste poultry feather.
-
Usage of Different Spectral Bands in Agricultural Environmental Protection
123-126Views:97Hyper and multispectral imaging systems are widely used in agricultural and environmental protection. Remote sensing techniques are suitable for evaluating environmental protection hazarsd, as well as for agriculture resource exploration. In our research we compared aerial hyper and multispectral images, as well as multispectral digital camera images with the background data from the test site. Hyperspectral records were obtained using a new 80-channeled aerial spectrometer (Digital Airborne Imaging Spectrometer /DAIS 7915/. We have chosen two farms where intensive crop cultivation takes place, as test sites, so soil degradation and spreading of weeds can be intensive as a result of land use and irrigation. We took additional images of air and ground with a TETRACAM ADC wide band multispectral camera, which can sense blue, green and near infrared bands. We had detailed GIS database about the test site. Weed and vegetation map of the area in the spring and the summer was made in 2002. For soil salt content analysis, we gathered detailed data frome an 80x100 m area. When analyzing the images, we evaluated image reliability, and the connection between the bands and the soil type, pH and salt content, and weed mapping. In the case of hyperspectral images, our aim was to choose and analyze the appropriate band combinations. With a TETRACAM ADC camera, we made images at different times, and we calculated canopy, NDVI and SAVI indexes. Using the background data mentioned above, the aim of our study was to develop a spectral library, which can be used to analyze the environmental effects of agricultural land use.
-
Correlations of the global, regional and local factors of the anthropogenic effects on the water reserves of the Earth’s crust
85-92Views:113The decrease in Earth's drinking water resources and the degradation of its quality has become a critical problem. Our planet's total water supply is estimated to be around 2 billion km3s. This is only 1% of Earth's own weight. Of this small amount only a tiny 3% is fresh water, of which 79% is forzen in glaciers and 1% is present as surface waters.The ratio of water stored in soil is around 20%. This is 0.2% of the total water supply. Our study aims to summarize the layered groundwater aquifer systems and its changes which are the results of anthropogenic effects in both global and hungarian respects and also for the region of Debrecen.In particular with regard to the geological and ecological level where irreversible
processes take place. All this is discussed in the context of cause and effect. Pointing out the dangers of excessive deep groundwater extraction and the contamination caused by toxic substances that are the byproducts of modern life. In addition we discuss the Water Directive of the European Union which gives a policy for community action concerning the goal to achive the status of „in good condition” for our waters till 2015. -
Measurement of the degradation of abandoned turf
145-149Views:197With the decreasing number of grazing livestock in Hungary, the role of the turf cultivation is also significantly decreasing. The proportion of the under- and non-utilized turf is increasing. In the research conduced at the University of Debrecen, IAREF Research Institute Karcag, we studied four types of turf utilization in three replicates on a salt field with timothy grass. We determined the flora composition of the experimental area, measured the soil moisture and the carbon-dioxide content of the soil.
-
Analysis of the Environmental Status of Nagykálló Subregion
362-367Views:123The third smallest region of Szabolcs-Szatmár-Bereg county is the Nagykálló subregion. Its territory is 377 km2 and its inhabitants number 32.526. Due to the fact that industrial development arrived late, the environmental status of this subregion was saved from serious ecological degradation. The quality of the environment shows a reasonable picture in many respects, comparing to the general survey of the country. The air quality of the region can be qualified as acceptable. Leaving some critical points out of consideration, it is better than the national average. It is favourable from the human environment point of view that the region is free of extremes, and has a balanced climate. The supply of drinking water is above 95%, and the remainsing water requirements are supplied by artesian wells. The water supply network is fully extended in the subregion. The most significant environmental noise source is traffic, including public road traffic, which causes a problem in the town of Nagykálló. The situation of the collection, transportation, and placement of the settlement’s solid wastes show a similar picture to the status of the country. The environmental status of the region is included in the SWOT analysis.
-
Anaerobe degradation of maize infected by Fusarium graminearum
57-61Views:180Last year intense rainfalls and moisture conditions were beneficial for the Fusarium sp. in Hungary. Fusarium strains decrease cereal quality (for example maize), furthermore may cause yield loss. Due to the toxin production, the fungi have a dangerous animal and human pathogen effect (Placinta et al., 1999).The effects of the Fusarium infection and its mycotoxin production haven’t been perfectly eliminated. Fusariumgraminearum
is the most common agricultural pathogen in Hungary. The utilization of infected maize as an alternative biogas raw material may be an efficient and environmentally friendly disposal method. In this case, Fusarium-, and mycotoxin-content of the maize have to be analyzed as well as the impact of these factors’ on the biogas production process. Our experience was based on the raw material basis of a biogas plant. Different amount of Fusarium free and infected maize grits have been added to the regular raw material mixture. The detection of Fusarium fungi has been analyzed
in experimental digesters throughout the different stages of mesophilic digestion. In the biogas liquid end product the Fusarium was detected by breeding and by microscope. According to our results, the Fusarium sp. was not detectable in the liquid end product after 30 days. -
New methods of compost homogeneity determination in sewage sludge based compost prisms
49-52Views:183There is no effective method of homogeneity measurement of compost prism. The most frequently used technology is the examination of the particle distribution. This method needs a lot of time and large number of samples. The aim of our research is establishing different effective methods to determine the homogeneity of compost prisms. During our work, we examined the homogeneity of a prism made of sewage sludge and saw-dust mixture.
The measurements were based on the different properties of raw materials. According to this we examined the homogeneity by moisture content, heavy metal content and gas distribution measurements.
The most effective method is the measurement of gasconcentration. Although gas-concentration measurements it need special equipment it has more advantages than the other methods. The examination of gas-distribution compensates the problem of sampling because the measurement is direct. It provides the opportunity to estimate the amount of emitted toxic gases and to determine the maturity of the compost and the effectiveness of the degradation.