Search
Search Results
-
Effect of Planting Time of Maize on Factors Influencing Yields in 2001-2002
112-116Views:155In this paper we analysed the results of maize planting time experiments by the Department of Crop Sciences and Applied Ecology of the University of Debrecen, Centre of Agricultural Sciences in 2001. We made the experiments at the experimental garden of DE ATC in Hajdúböszörmény.
We examined in 2001, 2002 ten hybrids with three planting times. The results were analysed by analysis of variance with two factors. In 2001 the yields were high, between 7.2-11.6 t/ha. The seed moisture contant of hybrids was 6-8% less after early planting than after late planting. The vegetation period of the hybrids became longer after early planting, which helped the drying-down of the hybrid and determined the seed moisture content at harvest to a great extent.
In 2002 the yields were high, between 4.02-10.47 t/ha. The seed moisture contant of hybrids was 5-14% less after early planting than after late planting.
On the basis of the above, variety specific technologies should be applied where the planting time is adapted to the hybrids. In accordance with the other cultivation factors. -
The Effect of Soil Coverings on Soil Respiration in Sandy Soil
21-25Views:205The purpose of our experiments is to study effect of different soil coverings (porous black polyethylene called agroszövet and black polyethylene) on CO2 production in sandy soil. The CO2 production was measured in our laboratory according to Witkamp (1966 cit. Szegi, 1979), after 5 days’ incubation period. Samples were taken off four times (March, May, July, September) in every year of the experiment. In May, July and September of 2000, the CO2 production was significantly higher in the control than in the treatment soil. With the exception of September, the value of CO2 production was significantly higher under black polyethylene than under agroszövet. In March and May of 2001, the soil under black polyethylene, and in July and September the control soil produced the greatest quantity of CO2. With the exception of July, significantly more CO2 was produced under black polyethylene than under agroszövet. To study the dynamic of CO2 production there was find a significantly higher value May and September of 2001 than 2000. Similarly significant higher CO2 production was detected in September than in the other months In average of two experimental years the difference between the produced CO2 under different coverings was occasionally. Explicit upward tendency in soil CO2 production was detected only in case of control soil. There was a medium (r=0,413) relationship observed between the moisture content and the CO2 producing ability of soil. To sum up the soil coverings had favourable effect on soil CO2 production very rearly, but they could help to conserve the moisture content of soil.
-
The significance of biological bases in maize production
61-65Views:254The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.
The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).
The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.
The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.
The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.
Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.
-
Methodology adaptation and development to assess salt content dynamics and salt balance of soils under secondary salinization
199-206Views:395The effect of irrigation with saline water (above 500 mg L-1) is considered a problem of small-scale farmers growing vegetable crops with high water demand in the hobby gardens characteristic of the Hungarian Great Plain. In order to simulate the circumstances of such hobby garden, we set up an experiment including five simple drainage lysimeters irrigated with saline water in the Research Institute of Karcag IAREF UD in 2019. We regularly measured the electric conductivity (EC) of the soil referring to its salt content and the soil moisture content with mobile sensors. Before and after the irrigation season, soil samples from the upper soil layer (0-0.6 m) were taken for laboratory analysis and the soil salt balance (SB) was calculated. The actual salt balance (SBact) was calculated of the upper soil layer (0-0.6 m) based on the salt content of the obtained soil samples. The theoretical salt balance (SBth) was calculated by the total soluble salt content of the irrigation water and leachates. During the irrigation season, we experienced fluctuating EC in the topsoil in close correlation with the soil moisture content. Based on the performed in-situ EC measurements, salts were leached from the upper soil layer resulting in a negative SB. Combining SBact and SBth of the soil columns of the lysimeters, we estimated the SB of the deeper (0.6-1.0 m) soil layer. We quantified 12% increase of the initial salt mass due to accumulation. We consider this methodology to be suitable for deeper understanding secondary salinization, which can contribute to mitigating its harmful effect. By repeating our measurements, we expect similar results proving that saline irrigation waters gained from the aquifers through drilled wells in Karcag are potentially suitable for irrigation if proper irrigation and soil management are applied.
-
Economic questions of maize production on different soil types
289-292Views:229The requirements and objective of cultivation are in constant change. For example, different cultivation systems are developed for the purpose of soil protection, the preservation of its moisture content and on soils with various precipitation supply or production site conditions. Traditionally, one of the most important cultivation aims is crop needs. Further cost saving in fertilisation and crop protection can only be achieved by reducing the quality and quantity of production or it cannot be achieved at all. Furthermore, the costs can be significantly reduced by means of the rationalisation of cultivation. Energy and working time demand can also be notably reduced if ploughing is left out from the conventional tillage method. The key requirement of economicalness is to perform the cultivation at the optimal date, moisture level and the lowest possible cost.
Within production costs, the cost of cultivation is between 3–17%, while they are between 8–36% within machinery costs. It is the vital condition the usability of each technological method to progressively reduce costs. Our evaluation work was carried out with the consideration of the yield data obtained from cooperating farms and the experiment database of the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen. Three technological methods (ploughing, heavy cultivator and loosening tillage) were used on several soil types which differ from in terms of cultivability (chernozem, sandy and sandy clay soils) from the economic/economical aspect. We examined the sectoral cost/income relation of maize production as an indicator plant. The maize price during the analytical period was 45 thousand HUF per t. On chernozem soils, the production of maize can be carried out on high income level, while maize production on sandy soils has a huge risk factor. The role of cultivation is the highest on high plasicity soils, since they have a huge energy
demand and the there is a short amount of time available for each procedure in most cases. -
Interactive evaluation of the main agrotechnical factors in rape production
71-79Views:227Our polifactorial rape research was carried out at Látókép Research Centre of Debreceni Egyetem AMTC, 15 km away from Debrecen. The aim was to study the unique effect and the interactive effect of more factors. The research factors were the following: cultivation, time of sowing and nutrient supply. Soil moisture datas proved unambiguously that increasing amounts of chemical fertilizer raise the water consumption of rape, lack of water in fertilized plots were always bigger then the water deficit in control plots. The highest amount of water deficit was experienced in the case of arable plots. However, increasing amounts of chemical fertilizers raised the amount of yield proportionately. We experienced yield depression only in the case of arable plots at the highest level of chemical fertilization. In polifactorial rape research sowing of 24th August 2007 of 2007/2008 was the most optimal in point of the amount of yield. This is most-significant in the case of loosening tillage and disking tillage plots, while the plots of ploughing lag behind those two in point of average yield. We experienced the biggest differences of yield in the case of different tillage plots of sowing on 24t August 2007. Still not even the plot with the highest average reached the limit of 4 tons, which can be attributed to high rate of lodging and the harvest loss caused by this. The biggest amount of yield was experienced in the case of sowing of 24th August 2007, with the highest level of chemical fertilization at loosening tillage plot (3930 kg/ha). We can observe big differences between the tillage methods; plots of loosening show a much better average yield then plots of disking and ploughing tillage. Considering the first observed crop year we can state that alternative tillage methods do have a future in rape growing of Hungary.
-
Investigation of soils of stubbles of winter wheat and winter peas in conventional and reduced tillage systems
95-99Views:314The effect of reduced and conventional tillage on soil compaction, soil moisture status and carbon-dioxide emission of the soil was studied on a meadow chernozem soil with high clay content in the soil cultivation experiment started in 1997 at Karcag Research Institute. Our investigations were done on stubbles after the harvest of winter wheat and winter peas after the very droughty vegetation period of 2014/2015.
We established that the soil in both tillage systems was dry and compacted and the CO2-emission was very low. The positive effects of reduced tillage could be figured out only in the soil layer of 40–60 cm in the given weather conditions of that period.
-
Measurement of the degradation of abandoned turf
145-149Views:297With the decreasing number of grazing livestock in Hungary, the role of the turf cultivation is also significantly decreasing. The proportion of the under- and non-utilized turf is increasing. In the research conduced at the University of Debrecen, IAREF Research Institute Karcag, we studied four types of turf utilization in three replicates on a salt field with timothy grass. We determined the flora composition of the experimental area, measured the soil moisture and the carbon-dioxide content of the soil.
-
Evaluation of striptillage and conventional tillage in maize production
37-40Views:260Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.
-
Impact assesment of soil conditioners on a high clay content soil
137-141Views:260Our measurements were done in a soil conditioner experiment started in 2014 which was set in conventional tillage system at the Karcag Research Institute where a soil conditioner was used from 2010. Effect of two different soil conditioners on compaction, moisture content of the soil and on CO2-emission was studied. Measurements were done after sowing of maize and millet, and on stubble after harvesting. It can be established that less degree of compaction was characteristic to the soil of the plots treated for several years with the soil conditioner during the vegetation period than in case of untreated plots. Higher CO2-emission values were observed on the plots treated for several years than on the control plots. This effect can’t be established in case of soil conditioners used for first time in this year.
-
Relationship between the change of soil moisture content of different soil layers and maize yield
19-25Views:270The development of chernozem soil water management and its relationship with maize yields was studied in a 30-years long-term field experiment with different crop-rotation systems (mono-, bi- and triculture), in three crop years with different natural precipitation: a drought (2007), a wet (2008) and a dry (2009 one. The relevant soil layer was divided to three sub-layers: (0–60 cm, 61–120 cm, 121–200 cm) in which the development of soil moisture content was investigated during the whole vegetation. From the results it can be stated that change of the water stock of the upper soil layer (0–60 cm) was the most intensive. Both the direct effect of natural precipitation and irrigation could be observed in the most obvious way in it. Yield result of maize and the highest water supply deficit values in the vegetation were compared in our work too. According to the results it was revealed that among the three studied crop rotation systems it was the monoculture, the success of production of which depends the most of water supply. The most favourable crop rotation system was the triculture from both the aspect of the yield of produced crops and the favourable soil properties too.
-
The main influencing factors effecting the yield of maize
137-141Views:245Maize is one of Hungary’s major cereals. In the 1970s and 1980s, we were in the frontline regarding yields and genetic advancement. However, yield fluctuation in maize has increased to 50-60% from 10-20% since the 1980s, which was partly caused by the increase in weather extremes due to climate change and by agrotechnical shortcomings.
The experiments were carried out on typical meadow soil in four repetitions in the period of 2007-2008. In the sowing time experiment, sowing was performed on 10 April, 25 April, 15 May under a uniform fertilization of N120, P2O580 K2O 110 kg/ha. In the fertilization experiment, the yielding capacity of 10 hybrids with different genetic characteristics was studied in a control (non-fertilized) treatment and basic treatment of N40 P2O5 25, K2O 30 kg ha-1 active ingredient and a treatment with fivefold dosages of the basic treatment. In the plant density experiment, the relationship between plant density and yield was analysed at plant densities of 45, 60 and 75 thousand plants per ha. We found a tight correlation between sowing time and yield and grain moisture content at harvest. We found that grain moisture can be reduced by 5-10% by applying an earlier sowing time.
The agroecological optimum fertilizer dosage was N 40-120, P2O5 25-75, K2O 30-90 kg ha-1 active ingredient at a plant density of 60-90 thousand plants ha-1 depending on the hybrid and the year. -
Opportunities of delineating inland waters and soil moisture with remote sensed data
95-98Views:278The methodology for delineating water bodies on multispectral remote sensing imagery was examined and evaluated. A supervised approach is tested with the aim to accurately detect inland water, moisturised soil surface and swampy patches on the Landsat TM 7 scene. The goal of this research is to investigate whether the application of remote sensing image interpretation could further refine the possibilities of future soil conductivity measurement research. The methodologies used were the application of supervised classification algorithms based on the training data collected in the area. The achieved overall classification accuracy value of 83.0795% suggests that the methodology could be used as a successful strategy to incorporate remote sensing data interpretation into soil conductivity measurement planning and application. The main conclusion that can be drawn is that processing of multispectral data with further refinement of the presented methodologies can led to very useful outcomes for environmental measurements.
-
Measurement of degradation on under-utilized natural turf
115-121Views:252The role of turf serving animal husbandry is significantly declining with the decreasing number of grazing livestock in Hungary. Accordingly, the area of under-utilized or non-utilized turfs is increasing. At the University of Debrecen, Institutes for Agricultural Research and Educational Farm, Karcag Research Institute we studied four types of turf utilization in three repetitions on a salt meadow with Alopecurus pratensis. As a result of the performed examinations, we identified the composition of the flora structure on the investigated area and we measured carbon-dioxide circulation and soil moisture.
-
Assessment of Environmental Susceptibility/Vulnerability of Soils
62-74Views:195Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
Soil resources are threatened by the following environmental stresses:
– soil degradation processes;
– extreme moisture regime;
– nutrient stresses (deficiency or toxicity);
– environmental pollution.
Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
The efficient control of these processes necessitates the following consecutive steps:
• registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
• evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
• assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
• elaboration of efficient technologies for the „best” control alternatives (best management practice).
Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society. -
The effect of the plant density for the yield of the maize hybrids
50-61Views:232In order to enchance the yield stability of maize, the effect of plant density on yields was studied on a typical meadow soil in Hajdúböszörmény between 2002-2004. In the plant density experiment, we used the method of Béla Győrffy. The plant densities applied therefore 20 to 100 thousand plants/ha by ten thousand scale. The application of fertilizer rates for the maize hibrids in every year were N: 110 P: 90 K: 120 kg/ha. We used a manual soiling-gun in the experiment. In every year we used plant protection techniques against monocotyledonous and dicotyledonous weeds. The harvest was done by hand. The facts were read by variancie analysis and linear regression analysis. The moisture and the temperatures were extreme in 2002, 2003, 2004. We have to mention defficiery of moisture in 2003 which is shown that the hot days number increased. After evaluating our findings we can conclude that most hybrids showed a significant correlation between increased plant density and the volume of yields. On the basis of the experiments we divided the hybrids into four groups: the first group included the hybrids suitable for increased plant density with a wide range of optimal density values; the second group included hybrids, which did not require high plant density, were capable of good individual performance and tended to grow several ears; the third group included flexible corn types, which grew longer ears in favourable years, thus yielded more; and the fourth group included the hybrids, which were sensitive to increased plant density and which showed a narrow range of optimal density values. Finally, plant density determines the yield; we have to consider optimal plant density intervals as well as optimal plant density, and we also have to place a high emphasis on the use of hybrid-specific technologies.
-
Effect of tillage practices, fertilizer treatments and crop rotation on yield of maize (Zea mays L.) hybrids
43-48Views:396This research was conducted at the University of Debrecen Látókép Research Station and is part of an ongoing long-term polyfactorial experiment. The impact of three tillage systems (Mouldboard plowing-MT, Strip tillage-ST, Ripper tillage-RT) and two levels of fertilizer treatments (N80 kg ha-1, N160 kg ha-1) along with a control (N0 kg ha-1) on the yield of maize hybrids (Armagnac- FAO 490 & Loupiac-FAO 380) cultivated in rotation with winter wheat was evaluated during a two-year period (2017–2018).
Amongst the three tillage treatments evaluated, ripper tillage (RT) had the highest average yield (10.14 t ha-1) followed by mouldboard tillage (MT) and strip tillage (ST) with 9.84 and 9.21 t ha-1 respectively. Yield difference between RT and MT was not significant (P>0.05), as compared to ST (P<0.05). Soil moisture content varied significantly with tillage practices and was highest in ST, followed by RT and MT (ST>RT>MT). Yield of RT was 7–9% higher than MT in monoculture plots, while MT reign superior in biculture plots (monoculture: RT>MT>ST; biculture: MT>RT>ST).
A positive interaction between tillage and fertilization was observed, with higher yield variation (CV=40.70) in the non-fertilized (N0) plots, compared to those which received the N80 (CV=19.50) and N160 kg ha-1 (CV=11.59) treatments.
Incremental yield gain from increase fertilizer dosages was significantly higher in monoculture, compared to biculture. There was no significant difference in yield between N160 and N80 in the biculture plots (12.29 vs 12.02 t ha-1). However, in monoculture plots, N160 yield was 23% higher than the N80 kg ha-1 (N160=11.74 vs N80=9.56 t ha-1).
Mean yield of maize in rotation with winter wheat was 28% (2.47 tons) higher than monoculture maize. The greatest benefit of crop rotation was observed in the control plots (N0) with an incremental yield gain of 4.39 tons ha-1 over monculture maize (9.92 vs 5.43 t ha-1).
Yield increased with higher fertilizer dosages in irrigated plots. Fertilizer application greatly increased the yield of maize and accounted for 48.9% of yield variances. The highest yield (11.92 t ha-1) was obtained with N160 kg ha-1 treatment, followed by N80 kg ha-1 (10.38 t ha-1) and N0 kg ha-1 (6.89 t ha-1) respectively.
Overall mean yield difference between the two hybrids was not statistically significant, however, yield of FAO 380 was 3.9% higher (9.06 vs. 8.72 t ha-1) than FAO 490 in monoculture plots, while in biculture plots, FAO 490 was 4.1% higher than FAO 380.
Average yield in 2018 was 13.6% (1.24 t ha-1) higher than 2017 for the same set of agrotechnical inputs, thus, highlighting the significant effect of cropyear.
Armagnac (FAO 490) cultivated in rotation with winter wheat, under ripper tillage and N80 kg ha-1 is the best combination of treatments for optimum yield.
-
Yield of herbicide tolerant sunflower hybrids due to the different herbicide treatments
121-125Views:190Sunflower is our most important oil-plant grown on the largest area in Hungary. In Europe sunflower has been grown since the 16th century. In recent years sunflower growing area is between 450-500 thousand hectares. Weed management in sunflower production is getting more and more difficult in case of annual and perennial dicotyledonous weeds, especially in dry springs. Two active ingredients, imazamox and tribenuron-methyl could be a solution for farmers for the control of these weeds in herbicide tolerant sunflower hybrids (Christensen-Reisinger 2000, Hódi-Torma 2004, Nagy et al. 2006). Most of the farmers choose the Clearfield technology and the use of tribenuron-methyl herbicides. In 2009 imazamox- (IMI) and tribenuron-methyl- (SU) tolerant sunflower hybrids were produced on 200 hectares in Hungary, of which 150 hectares was IMI, while 50 hectares was SU-hybrids. Small plot experiments were carried out to investigate the phytotoxicity of herbicides on imazamox (IMI) and tribenuron-methyl (SU) tolerant sunflower hybrids under field conditions. At harvest we measured the moisture content of achenes and average yield.
-
New challenges in soil management
91-92Views:315Soil management represents two important tasks that are harmonization of the soil protection with demands of the crop to be grown on the given land under prevailing farming condition. Further goals are to preserve and/or develop the soil physical, biological and chemical condition and to avoid the unfavourable changes of the soil biological activity and the soil structure. Classical authors emphasised the importance of creating proper seedbed for plants. In the physical approach, tillage was believed to play an important role in controlling soil processes. Consequently, the period of several centuries dominated by this approach is referred to as the era of crop-oriented tillage (Birkás et al., 2017). The overestimation of the importance of crop requirements resulted in damaging the soils, which inevitably led to turn to the soil-focused tillage. Since the first years of climate change, as the new trends have raised concern, tillage must be turned into a climate-focused effort with the aim of reducing climate-induced stresses through improving soil quality.The development of soil management has always been determined by the economical background. At the same time, deteriorating site conditions have contributed to the conception of new tillage trends by forcing producers to find new solutions (e.g. dry farming theory in the past or adaptable tillage theory nowadays). Győrffy (2009) recited the most important keywords were listed in 2001 and that seemed to be important in the future of crop production. These keywords (endeavours) were as follows:− Biofarming, organic farming, alternative farming, biodynamic farming, low input sustainable agriculture;− Mid-tech farming, sustainable agriculture, soil conservation farming, no till farming, environmentally sound, environmentally friendly, diversity farming;− Crop production system, integrated pest management, integrated farming, high-tech farming;− Site specific production, site-specific technology, spatial variable technology, satellite farming;− Precision farming.Győrffy’s prognosis proved to be realistic and the efforts mentioned above have mostly been implemented. New challenges have also appeared in soil management in relation to the last decades. The most important endeavours for the future are:1) Preserving climate-induced stresses endangering soils.2) Turn to use climate mitigation soil tillage and crop production systems.3) Applying soil management methods are adaptable to the different soil moisture content (over dried or wet may be quite common).4) Use effectual water conservation tillage.5) Use soil condition specific tillage depth and method.6) Adapting the water and soil conservation methods in irrigation.7) Preserving and improving soil organic matter content by tillage and crop production systems.8) Considering that stubble residues are matter for soil protection, humus source and earthworm’ feed.9) Site-specific adoption of green manure and cover crops.10) Applying site-adopted (precision) fertilization and crop protection. Considering the development in agriculture, new endeavours will occur before long. -
Effect of agrotechnical factors on the activity of urease enzyme in a long term fertlization experiment
43-48Views:295The soil is a natural resource, the fertility preservation is an important part of the sustainable development. We have to monitor the transformation dinamics of the organic nitrogen-containing substances, to get accurate information about the changes of the nitrogen cycle in the soil.
Physical and chemical properties of the soil and the microorganism effect on the organic matter in the soil – in addition to the composition of organic matter. Wide variety of extracellular enzymes are present in this decomposition. These enzymes help in the transformation of the macromolecules to transforming low molecular weight compounds so they will be available during the assimilation.
The urease enzyme, catalyzes the hydrolysis of urea to CO2 and NH3. The urease is widely spread in the nature, it is present in the microorganisms, plants and animals.
We found that the soil moisture content, the rotation and the fertilization affect to the amount of urease in spring. Furthermore, we get significant difference between the irrigated and non irrigated samples in the second period of the year. Based on our results we can state that the activity of urease was higher in spring 2014.
The objective of our study was to present how the different agronomic factors affect on the activity of urease in a long term fertilizationexperiment.
-
Agricultural relations of the increasing carbon dioxide emissions
197-201Views:529Emissions of carbon dioxide (CO2) have deserved more and more attention of humanity since decades, but inspite of theme asures already taken there are no substantial results. CO2 is a very important chemical, one of the greenhouse gases, which on the one hand offsets the cooling of the Earth, but on the other hand the too high CO2 emission leads to the global warming. The emission from the soil contributes substantially to the global cycle. This type of emission is influenced by the soil moisture, temperature, the soil quality and the cultivation. Through our measurements we have studied the relationships between the type of cultivation and the emissions of carbon dioxide.
-
Examination of drought stress of two genotype maize hybrids with different fertilization
53-57Views:233In the growing season of 2019, we analysed stress resulting from climatic factors on maize hybrids of different genotypes, with the aim of gaining a better understanding of the physiological responses of each hybrid, which might support the elaboration of a cost-effective irrigation plan.
Our experiments were carried out at the Látókép Experimental Station of the University of Debrecen on calcareous chernozem soil in a small-plot long-term field trial with strip plot design. In the scope of the experiment, N-fertilizer doses were applied as basic fertilizer and top-dressing in addition to the non-fertilized (control) treatment. The 60 and 120 kg N/ha doses applied as basic fertilizers in the spring were followed by top-dressing in the V6 phenophase with a +30 kg N/ha dose. Measurements were carried out with the involvement of the Renfor early (FAO 320) and Fornad (FAO 420) late maturity hybrids-
The stomata of the plants became more and more closed with the progression of the phenological phases; their stomatal conductance decreased. However, the hybrids responded differently to environmental stress. In the case of the Renfor hybrid, the highest conductance (669 mmol/m2-s) was recorded in the V12 phenophase with the 150 kg N/ha treatment. The stomata were more open due to the high turgor pressure, allowing plants to evaporate properly. The plant was in its worst physiological condition on 2nd July, at the time of the appearance of the last leaf in the case of the 120 kg N dose (224 mmol/m2-s). The value measured in the V12 phenophase has already shown that the stomata were closing due to the self-regulating system of the plant. It would have been necessary to dispense irrigation water following the measurement. This confirms the finding that water stress can be prevented by measuring stomatal conductance.
In the case of the Fornad hybrid, stomatal conductance was the highest on 12th June (630 mmol/m2-s) in the 90 kg N/ha treatment and it was the lowest (183 mmol/m2-s) in VT (emergence of the last leaf) phenophase in the 60 kg N/ha treatment. In this case, the appropriate time for applying irrigation water would have been early July, when the conditions for the plants were still adequate. Subsequently, the stomata began to close due to a reduction of the water resources available to them.
There was a significant correlation between soil moisture and stomatal conductance, as well as between temperature and stomatal conductance.
-
Effect of extreme crop year on soil moisture in maize
35-40Views:151We examined the change of the time of water balance of soil in 25 years old experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture) in two extreme cropyear in 2007 and 2009 in maizestock.
According to our findings the values of waterdeficit of soil of maizestock were about 100 mm before the sowing time that grew because of considerable deficit of precipitation and high average temperature in months of summer. Values of waterdeficit achieved at the end of August the maximum and lessed a little bit to end of crop time. Decrease of waterstock stopped because of irrigation treatments in irrigated plots but the difference between two irrigation treatments (Ö1-Ö3) vanishedat the end of summer, waterdeficit were higher with 17 mm in monoculture in irrigated plot than value of not-irrigated plot. Considerabler precipitation in Jun effected on waterbalance of soils of three of crop-rotation systems favourable, rapid waterloss starting to april began to lessenat the end of May and started to increase from early in July. Precipitation in Jun had positiv effect on yield also. -
The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
205-208Views:540Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.
-
The Effect of Soil Coverings on Cellulose Decomposition Activity of Sandy Soil
15-20Views:151The purpose of our experiments is to discover the effect of different soil cover matter (agroszövet and black polyethylene) on actual (under field circumstances) and potential (under laboratory circumstances) cellulose decomposition activity. In our field research, the Unger-test was used, and in laboratory research, the Petkov-Markova method was applied. In the first year of the experiment (2000) actual cellulose decomposition activity was significantly higher in covered than in the uncovered soil both in spring and autumn. The difference between the two treatments was significant only in spring. In the spring of 2001 black polyethylene showed significantly the lowest, activity, while in autumn the agroszövet (a porous black polyethylene) showed significantly the highest activity. In the autumn of 2001 the soil covered by black polyethylene gave non-significant,and the soil covered by agroszövet gave a significant higher activity value than the control. Averaging the two experimental years (2000-2001), the actual cellulose decomposition activity was significantly higher in covered soils both in spring (with 30-39%) and in autumn (with 34-69%). Moreover, in autumn a significantly higher value was detected under agroszövet than in any other treatment. The difference between the effect of treatments was not significant. In 2000, the potential cellulose decomposition activity was the highest in soil covered by agroszövet in spring, but in autumn higher activity value was detected in every covered soil than in the control. In the spring of 2001, every covered soil showed a lower, but in autumn a higher, potential cellulose decomposition rate than the control. The activity decreased significantly 27 (agroszövet) and 45 (black polyethylene) percent in spring, and increased no- significantly 8 (agroszövet) and 4 (black polyethylene) percent in autumn. During the two experimental years, we observed on average lower potential cellulose decomposition activity (15-60%) in spring and a higher one (14-43%) in autumn. Neither was significant. The dynamic of potential cellulose decomposition activity averaging 2000 and 2001 showed a slight, the actual cellulose decomposition activity an explicit non-significant upward tendency. There was a strong (r=0,189) correlation obtained between the actual and potential cellulose decomposition activity of soil, and a medium-strong (r=0,673) relationship between the soil moisture content and actual cellulose decomposition activity.