Search

Published After
Published Before

Search Results

  • Effects of cultivation practices and hybrid selection on endofusariosis and mycotoxin contamination in maize
    69-78
    Views:
    425

    The aim of this study was to determine the levels of deoxynivalenol (DON) and fumonisin mycotoxins in tillage and no-till systems in 2020 and 2021. Additionally, we sought to establish the levels of internal Fusarium infection in different tillage systems. We examined four tillage systems for two years (conventional tillage (plowing), conservation tillage, reduced tillage, and strip-till). The results indicate that toxin levels varied between the two years, with fumonisin production dominant in 2021, while DON toxin production was dominant in 2020. Regarding internal Fusarium infection, the lowest levels were observed in the plowing system in 2020, whereas in 2021, the lowest levels were measured in the reduced tillage system. Like the low DON levels in 2020, the plowing-based tillage system resulted in the lowest fumonisin levels in 2021. Throughout our experiment, the toxin levels were below the permissible limits for unprocessed corn, with DON levels under 1750 μg kg-1 and combined fumonisin B1 and B2 levels under 4000 μg kg-1. However, in areas where toxin contamination is typically problematic, considering the beneficial impact of plowing on reducing toxin contamination might be advisable when planning tillage.

     

  • Results of the sensory analysis of precision maize production
    59-62
    Views:
    511

    This research was carried out in 2018, at the Látókép Experimental Station of the University of Debrecen in a moderately warm and dry production area, on deep humus layered medium-hard calcareous chernozem soil. In the scope of the research, the chlorophyll content of maize (Zea mays L.) was examined under field circumstances by means of local sensory measurements and we were looking for correlation between the obtained values and the amount of yield. Our measurements were carried out with Minolta SPAD-502 and GreenSeeker devices at 3 measurement times (4 leaf stage, 10 leaf stage and silking). It was found that phenological phases had an effect on the obtained SPAD and NDVI values and were in a slightly significant correlation with the yield. The most significant correlation was found between the results obtained during silking and the amount of yield. This may be because the least time has passed between the measurement time and harvest. Results obtained during the 10-leaf stage show excessive values in each case, which can be due to a measurement error. It was found that the phenological phase had an effect on the correlation of SPAD and NDVI values and the amount of yield. As the phenological phase progressed, the correlation between the measured results and yield has increased.

  • Following-up organic pollutants in the course of producing foods
    244-248
    Views:
    486

    We analysed the raw materials in various food products, including additives, carrier solvents and end product for several selected organic pollutants. We analysed these food products for the type of chlorinated hydrocarbon pesticides, polychlorinated biphenyls and other currently used pesticides.
    We analysed three product categories: bakery products, canned mushroom and meat products. The analysis of the bakery products and of the canned mushroom did not conclude in positive findings, which means that these products contained the agents given during the production of the product and the environmental pollutants in undetectable low concentration.
    However, the results for meat and fish products indicate that polychlorinated compounds are persistent and are of a lipophyl character, as some of these components have been detected in these food products, the concentration of the PCBs were detected in the range of 9.8-24 μg/kg.

  • Evaluation of chickpea (Cicer arietinum L.) in response to salinity stress
    105-110
    Views:
    752

    Soil salinity is a severe and expanding soil degradation problem that affects 80 million ha of arable lands globally. Chickpea (Cicer arietinum L.) is very sensitive to saline conditions; the most susceptible genotypes may die in just 25 mM NaCl in hydroponics. Approximately 8–10% yield loss in chickpea production is estimated due to salinity stress. However, it is still not established why chickpea is so susceptible to salt affection. Salinity (NaCl) impedes germination of seeds, though chickpea varieties considerably differ from one another in this respect. Some chickpea genotypes are more tolerant in the stage of germination, tolerating even 320 mM NaCl. The reasons of this variation are unrevealed; there is a shortage of knowledge about the germination abilities of chickpea genotypes in saline conditions. Nevertheless, the effect of salt stress on vegetative growth can be analysed in hydroponics, in pot or field conditions, regardless the experimental environment, the ranking of genotypes regarding salt resistance is coherent. Chickpea genotypes can be different in their ability to retain water, maybe under salt affection; the more salt tolerant lines can maintain higher water content in the shoots, while the more sensitive ones cannot. The identification of salt tolerant chickpea landraces based on developing genetic variability is a suitable strategy to combat against salinity problems arising in arid and semi-arid areas.

  • Examinations of the carbon dioxide emission of the soil in the case of different tillage methods in a field experiment
    209-212
    Views:
    523
    Today's global challenge is the increasing concentration of carbon dioxide (CO2) and other greenhouse gases in the air. The level of CO2 emissions may be significantly affected by the agriculture and, more specifically, the applied tillage method, even though to a lesser extent than industrial production. On a global scale, the CO2 emission of an agricultural area is insignificant in comparison to that of a large-scale plant in an area of the same size, but areas under cultivation, including arable land, have a large global area. In this paper, we investigated the relationship between applied soil tillage methods and carbon dioxide emissions in the case of different fertiliser treatments. In our experiment we examined four types of tillage with five different fertiliser effects. Comparing fertiliser treatments and tillage methods, it was found that their interaction significantly affected carbon dioxide emissions, the lowest value was obtained in the case of the 210 l ha-1 Nitrosol+N-LOCK – tillage radish treatment. Strip and tillage radish methods have relatively homogeneous, low value.
  • A global bibliographic review of soil variability trends on arable land: An impetus to sustainable land management
    27-39
    Views:
    153

    Crop production is significantly affected by soil properties under the influence of climate, management practices, and geographical location. Soil variability affects the development, quality, biochemical reactions, and heterogeneity of soil. The most recent research has focused on soil variability monitoring, highlighting the importance of soil testing. This review aimed at identifying global research trends and assessing soil testing in monitoring variability on arable land, based on the bibliographic method. Literature search in Scopus Database (2020-2023) yielded 8,898 documents, refined to 815 articles. VOSviewer 1.6.20 Software was used for analysing exported data. The results revealed a growing emphasis on monitoring soil variability, with key countries including India, United States of America (USA), China, Australia, Canada, United Kingdom, and Brazil. Funding mainly came from Asia, North America, and Europe. Common monitoring approaches included soil tests and remote sensing, focusing on organic carbon, nitrogen, phosphorus, potassium, microorganisms, and soil moisture. However, digital illiteracy and high costs were major hindrances to using remote sensing and modern soil testing tools. The study suggests that whereas soil variability monitoring is essential for sustainable land management, development of affordable soil testing equipment and improved digital education are needed for its enhanced adoption.

  • Some strategic aspects of animal protein production
    11-19
    Views:
    283

    The access to food shaped human societies and dietary models throughout the history of mankind. Animal protein consumption became a part of human culture. Data are presented showing the relationship of daily calorie and animal protein consumption as affected by capita GDP changes. Examples are presented how genetic improvement of animal and fodder plants influenced the resource efficiency and the overall environmental footprint per unit product. The two examples presented are: the dairy industry of the USA the 1944 and 2007 situation, and the Hungarian broiler chicken sector considering data relevant to 1930, 1960 and 2010. In both cases, dramatic improvements in resource efficiency could be demonstrated. The agricultural area required to animal feed production was reduced by more than 80% in both cases per unit product. Future possibilities are briefly discussed, referring to the still unutilized land reserves of the Globe, the new evolving technologies in progress inclusive the CASPR/Cas 9 genetic editing methods.

  • Site and hybrid-specific agrotechnical models in sweet corn production
    105-108
    Views:
    185

    The effect of three agrotechnical factors (sowing time, fertilization, plant density) and two genotypes on the crop yield of sweet corn was examined on chernozem soil in the Hajdúság region in two different crop years. Compared to the 30-year average, the climate was dry and warm in 2009 and humid in 2010. The experiments were conducted at the Látókép Research Site of the University of Debrecen. In the experiments we applied two sowing times (end of April, end of May), six fertilization levels (control, N30+PK, N60+PK, N90+PK, N120+PK, N150+PK) and two crop density levels (45 thousand ha-1, 65 thousand ha-1). The hybrids we used were Jumbo and Enterprise. As regards the requirements of sweet corn production, the crop year of 2009 was dry and warm. The effect of moisture deficiency was more adverse on the crop yields with the second sowing time. On the contrary, the other examined year (2010) was significantly humid; the precipitation was 184 mm above the 30-year average and the temperature was average.
    In the dry and hot crop year, the best yields were obtained with the hybrid Jumbo (25677 kg-1) at 65 thousand ha-1 plant density level on the average of the fertilization levels. The crop yields of Enterprise were also the highest at high plant density level (24444 kg ha-1). With the second sowing time the highest yields were obtained at the higher plant density level (65 thousand ha-1) with both hybrids (Jumbo 18978 kg ha-1, Enterprise 18991 kg ha-1), which confirmed the good adaptation capability of these hybrids at high plant density level. In humid crop year with early sowing time the highest yielding hybrid was Enterprise (at 45 thousand ha-1 crop density level 20757 kg-1), at the same time, Jumbo was best yielding at the higher plant density level (18781 kg-1). With the second sowing time the highest crop yield was obtained with Enterprise again (20628 kg ha-1 at 65 thousand ha-1 plant density level). With this sowing time the average yields of Jumbo, was 18914 kg ha-1 respectively. We found that dry crop year and early sowing time provided the best conditions for sweet corn production; the highest yields were obtained under these circumstances, which might be the results of the outstanding water management of chernozem  soils.

  • The effects of drought stress on soybean (Glycine max (L.) Merr.) growth, physiology and quality – Review
    19-24
    Views:
    388

    Abiotic stresses are one of the most limiting factors inhibit plant's growth, leading to a serious production loss. Drought stress is one of the most destructive abiotic stresses and is still increasing year after year resulting in serious yield losses in many regions of the world,
    consequently, affecting world’s food security for the increasing world population. Soybean is an important grain legume. It is one of the five major crops in the world, an essential source of oil, protein, macronutrients and minerals, and it is known as the main source of plant oil and protein. Harvested area of soybean is increasing globally year after year. However, soybean is the highest drought stress sensitive crop, the water deficit influences the physiology, production and seed composition of this crop. We introduce a review for literatures concerning the changes of the above traits of soybean exposed to drought stress, with past explanations for these changes.

  • Improved soil and tomato quality by some biofertilizer products
    93-105
    Views:
    414

    The use of microbial inoculums is a part of sustainable agricultural practices. Among various bioeffectors, the phosphorus-mobilizing bacteria are frequently used.

    The objective of this study is to investigate the effect of some industrial biofertilizer inoculums, of containing P-mobilizing bacteria on the quantity and some quality parameters of tomato fruits. Spore-forming industrial Bacillus amyloliquefaciens FZB42 (Rhizovital) as single inoculums and combinations with other Bacillus strains (Biorex) were applied on Solanum lycopersicon Mill. var. Mobil test plant. Soil microbial counts, phosphorus availability, yield and fruit quality, such as total soluble solids (TSS) content and sugars (glucose, fructose) were assessed. The results found that single industrial inoculums of FZB42 product had positive effect on P-availability and fruit quality in the pots. Fruit quality parameters, TSS content, soluble sugars were significantly improved (p<0.05). Such better fruit taste was correlated significantly by the most probable number (MPN) microbial counts. Use of such bioeffector products is supported by the positive interrelation among measured soil characteristics and inside healthy quality parameters of tomato fruits.

  • Energy crops on less favoured (alkaline) soil
    115-118
    Views:
    243

    The reduction in fossil energy and row material sources induces growing demand for renewable resources. The growing demand for herbal raw materials has land use impacts as well. One way to reduce the conflict between the food and energy crops can be the utilization of less favored areas by growing energy crops. Among the potentially available areas for this purpose the salt affected soils (SAS) occupy a significant territories. SAS with structural B-horizon (meadow solonetz soils) represent the most wide spread group of SAS in Hungary. About half of these soils have been reclaimed and used as arable land and the remaining 50% are used as grassland. Sweet sorghum production for manufacturing of alcohol production was investigated in a long term amelioration and fertilization experiment on a salt affected soil (meadow solonetz). By means of regression analyzes the effect of sodium content of the soil and increasing mineral fertilizer doses were studied. According to the multiple regression analysis only the effect of nitrogen fertilizer was significant. On the solonetz type salt affected soil the effect of water soluble salt content of the soil was not significant, but there was a closer correlation between the ammonium-lactate sodium content and the yield of sweet sorghum. The maximum green mass was 45–50 t ha-1, in the case of low Na content and high level of nitrogen fertilization.

    In order to quantify the potential yield of natural grass vegetation the relationship between the soil forming processes and the grass vegetation
    was investigated. Beyond the different forms of Na-accumulation, the spatial pattern (mosaic-like characteristic) is also an inseparable feature of salt affected soils. The difference in the water regime, caused by the micro-relief is the main cause of variability. The run-on water keeps the deeper parts of the catena position wet longer. The wet situation causes more intensive leaching. In the low-laying parts of salt affected soils species preferring wet situations (mainly Alopecurus pratensis) are in majority. On the higher parts of the micro-relief species tolerating dry situations (mainly Festuca  pseudovina) are dominant. The yearly grass production of low laying areas can be 4–7 t ha-1 but because of prolonged wet  conditions the grass is not grazed and mowing can only be in old state. This old grass is not proper for feeding, but it may be suitable as energy plant. 

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    201

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • Biological potential of plant pathogenic fungi on weeds: A mini-review essay
    59-66
    Views:
    570

    The invasion of weeds into productive areas has substantial negative effects on native ecosystems as well as agricultural production systems globally. Consequently, the task of maintaining or restoring these systems will become increasingly challenging without consistent, ongoing management efforts. The intensifying emergence of herbicide resistance in numerous weed species, coupled with the unintended pollution caused by synthetic herbicides, underscores the growing necessity for alternative, environmentally friendly, and sustainable management techniques, such as the utilisation of bioherbicides. Plant pathogenic microbes play an important role in biologically management of weeds, with the utilization of plant pathogenic fungi emerging as a promising area of study for novel research trends aimed at weed management without reliance of herbicides and to mitigate environmental pollution. A potential solution to decreasing pesticide usage involves the development of bioherbicides containing fungal active ingredients. Among the most commonly utilised fungi in bioherbicides are genera like Alternaria, Colletotrichum, Cercospora, Fusarium, Phomopsis, Phytophthora, Phoma, and Puccinia. Increased weed resistance to herbicides has influenced new strategies for weed management, with some fungi from genera such as Colletotrichum and Phoma already employed for weed control. Nonetheless, it is evident from reviews that further research is imperative in this domain, with particular emphasis on analysing the efficacy of each plant pathogenic fungi.

  • Examination of the interval between litters (IBL) of different genotype HLW sows using survival analysis
    13-17
    Views:
    482

    In this study our aim was to find out if there is a difference between the genotypes determined for the previously identified mutations of seven genes of the Hungarian Large White in terms of the time spent in production. We identified the previously determined alleles of the seven genes (BF, EGF, ESR, FSHβ, H2AFZ, LEP, PRLR) related to proliferation that were and performed the survival analysis between breeds indicating the risk of culling and the time spent in production on the given farm. Based on the results of survival analysis by Log-rank test, Breslow (Generalized Wilcoxon) and Tarone-Ware test we concluded that they indicated a significant difference in case of the genes BF (Breslow and Tarone-Ware tests) the EGF (Log-rank and Tarone-Ware tests) and ESR (Log rank test) based on which the curves of the survival of the certain genes varied form one another significantly.

  • Realisation of customer focus from quality and forage safety aspects in the Hungarian mixed feed production
    35-38
    Views:
    193

    Customer focus is one of the main principles of Total Quality Management, and it is inevitable for long term, mutually successful vendorcustomer partnerships. The strictly controlled quality management systems of animal feed industry ensure that product quality meets the expectations of all parties involved and, indirectly the reliability of human food raw materials. Meanwhile, the participants of agricultural production are variably quality conscious, so feed manufacturers support their supply chain and also their customers with professional background and they play a key role in safe food chains from farm to fork.

  • The effect of crop protection and agrotechnical factors on sunflower in the Hajdúság region
    39-46
    Views:
    239

    Extreme weather conditions are becoming more and more frequent in the crop years, thus increase the risk of sunflower production.
    The objective of researches into plant production is to minimize these effects as much as possible. In this sense, the optimization of
    agrotechnological factors is of high importance. Within these factors, the appropriate crop technology (sowing time, crop density)
    and optimized, rational crop protection technologies are important, especially in the highly sensitive sunflower cultures. The effect of
    sowing time, crop density, and fungicide treatments on the yield of sunflower hybrids was analysed in different crop years in 2008
    and 2009. In each case, the infection was highest with the early sowing time and at the highest crop density level (65000 ha-1). When
    one fungicide treatment was applied, the rate of infection decreased compared to the control treatment. The further decrease of the
    infection rate was less after the second fungicide treatment.
    In the humid year of 2008 the crop yield was the highest at 45000 ha-1 crop density level in the control treatment and at 55000 crop
    ha-1 crop density level when fungicides were applied. In the draughty year of 2009 the maximum yield was gained at 55000 ha-1 crop
    density level in the control treatment and at 65000 crop ha-1 when fungicides were applied. In 2008 and 2009 as regards the crop
    yield, the difference between the optimal and minimal crop density levels was higher in the fungicide treatments than in the control
    treatment (in 2008: control: 517 kg ha-1; one application of fungicides: 865 kg ha-1; two applications of fungicides: 842 kg ha-1), (in
    2009: control: 577 kg ha-1; one application of fungicides: 761 kg ha-1; two applications of fungicides: 905 kg ha-1).
    In each and every case, the first treatment with fungicides was more effective than the second. In 2008, the highest yield was
    obtained with the third, late sowing time in each fungicide treatment. The differences between the crop yields with different sowing
    times was less than in 2009, when the results of the second treatment exceeded those of the first and third treatment in each case.

  • Heat stress of cattle from embryonic phase until culling
    11-22
    Views:
    643

    Heat stress becomes a serious problem in the livestock sector as it affects cows' performance negatively. The objective of this paper review is to investigate the effects of heat stress during the different phases of the life cycle of cows; embryos, calves, heifers, and cows. Heat stress during early maternal gestation affects the ability of embryos to develop increasing the risk of abortion and early embryonic death. Heat stress during late maternal gestation affects the performance of calves and heifers later in their life, as it reduces growth performance, conducts physiological changes, impaired immunity, changes the behavior, and reduces the length and intensity of the estrus in heifers with decreasing in milk production in the first lactation. On the level of cows, milk quality and production, meat quality, and the final body weight decrease under hot temperatures. Heat stress decreases the conception rate, alters follicle growth, and estrous symptoms. Hormones secretion and physiological changes because of the heat stress conduct to impair the immunity system, and in oxidative stress and death in some cases. Same as for calves and heifers a change in the behavior of cows was detected in order to decrease their temperature.

  • Study of animal welfare status and heat stress measures applied in dairy cow herds in Hungary
    79-82
    Views:
    302

    The following material focuses on dairy production and climate related issues in Hungary. All the data was gathered during PhD
    project: Study of animal welfare status in dairy cow herds in Hungary. Relations between animal welfare and climate changes expressed by
    increase in temperature are described. Extremely hot weather creates hard conditions for milking cows when animal welfare is highly
    compromised. From the preliminary results obtained one might formulate hypothesis that there are still areas on the farms where immediate
    actions should be taken to give a relief to cows in hot seasons. There was found significant number of farms with too many animals per one
    water trough, dirty water troughs, limited access to water troughs and hazardous surface for cows in critical places where many animals are
    gathered. Calves with not sufficient amount of water in hot days and other parts of the year were reported. Silage exposure to the sun and
    mouldy food in a silage clump was also found to be an important factor in monitoring impact of warm weather. Half of the farms letting
    animals to spend time on the pasture or paddock did not provide shade for animals. Low conception rate of first insemination was predicted
    to be influenced by heat stress, what is proved by lack of heat decreasing measures taken on the farms.

  • Evaluation of striptillage and conventional tillage in maize production
    37-40
    Views:
    328

    Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.

  • Impacts of ethnoveterinary medicine integrated with livestock farm technologies on the performance and antimicrobial resistance of indigenous goats in South Africa –A review
    93-103
    Views:
    336

    Ethnoveterinary medicine and livestock farm technologies represent a junction of innovation and tradition with the aim to accomplish livestock systems that are resilient, productive, and sustainable to meet 21st century challenges, especially the antimicrobial resistance issue. This article aims to emphasise the impacts of integrating ethnoveterinary medicine with livestock farm technologies on the performance of indigenous goats in South Africa. With the growing concern over antimicrobial resistance in livestock, there is a pressing need for complementary approaches to the health of animals and their productivity. In this review, the aim evaluated whether an integrative approach could offer a sustainable alternative that benefits animal health and productivity while addressing the concerns of antimicrobial resistance. Comparative study designs across multiple indigenous goat farms were used to integrate specific medicinal plants in ethnoveterinary medicine with present-day livestock technologies that are used to monitor the effects on livestock performance indicators and antimicrobial resistance patterns. In the treated populations, the outcomes were indicative of substantial improvements in reproduction and growth rates, and alongside, there has been a notable decrease in the markers of antimicrobial resistance. Therefore, it is proposed that through these discoveries, the integration of these traditional and modern approaches not only improve the performance of indigenous goats but also contribute immensely to the mitigation of risks associated with antimicrobial resistance.

  • The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
    205-208
    Views:
    565

    Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.

  • Long-term experiments on chernozem soil in the University of Debrecen
    357-369
    Views:
    468

    The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fertilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.

    Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.

  • The role of non-optimum Fe-Zn ratio in the development of latent zinc shortage in cucumber (Cucumis sativus L.)
    7-11
    Views:
    229

    The general micronutrient deficiency of the soils influences the quality of food production which causes human health problems in several countries as well. The non optimal Fe-Zn ratio can cause latent zinc deficiency – which the plants response in the function of their sensitivity –what has no visual symptoms or the plant shows deficiency symptoms in case of appropriate zinc supply. This phenomenon can cause significant decrease in the crop yield.

    The aim of this study was to prove the role of non optimal Fe-Zn ratio in the evalution of latent zinc deficiency.

    The non optimal Fe-Zn ratio caused decrease in the number of the leaves, the number and length of the internodes, the relative chlorophyll contents and in the dry matter production. According to the results the non optimal Fe-Zn ratio caused difficulties in the metabolism, which decreased the examined plant physiological parameters in the most cases. It can be concluded if there are higher iron contents in the tissues than zinc it can result latent zinc deficiency.

  • Comparative study of different soybean genotypes in irrigation technology
    91-95
    Views:
    694

    In many places in Hungary, early maturity soybean can be successfully grown. The earlier maturity group of soy which ripened in 110–125 days in most crop areas in Hungary. However, to achieve excellent results, the selection of proper varieties is important too. Successful cultivation is largely dependent on the macro and microclimate of the production area, the nutrient supply of the soil and the cultivation technology. Soybean can be produced in places where the amount of precipitation is right, as the lack of water results in lower yields and deteriorated oil and protein concentrations. In the following study, 2 years (2016 and 2017) are compared to the yield, protein and oil content of the soybeans of the early maturation group in irrigated and non-irrigated treatments. Based on our experiment, it can be stated that, during the irrigation of soybean, oil and protein content and yields did not always change.

  • Farms in the system of European supportpolicy
    79-83
    Views:
    169

    Common Agricultural Policy (CAP) has been having a great past, it is over numerous direction and structure changes in the last half century. After the Treaty of Rome, the harmonization of he agricultural structure and the production of Member States has been launched, during which the economic changes in the world and in Europe were continuously being kept track of. By using common experience, they strived to develop an agricultural sector that supplies the Member States of the Community with food, while the competitiveness and living circumstances of family farms are being improved. The general directions outlined in Stresa in 1958 were significantly redrawn owing to the transformed market conditions and EU accessions. The subsidization of family farms and the improvement of their profitability are having a stressed importance nowadays, too. Our country, as the fully qualified member of the European Union tries to meet its obligations undertaken in the accession treaty and therefore to develop an agricultural sector carrying out diversified agricultural production with a healthy age structure. The aim of the study is to specifically overview the issue of common agricultural policy by stressing the main development points and to introduce the Hungarian conditions of family farms. Besides, there will be an evaluation of the research works examining the income conditions of family farms in the North Great Plain region.