Articles

The importance of chickpea (Cicer arietinum L.) and its cultivation in Hungary: A review

Published:
2025-12-02
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Nagy, I. A., Mendler-Drienyovszki, N., & Szabó, A. (2025). The importance of chickpea (Cicer arietinum L.) and its cultivation in Hungary: A review. Acta Agraria Debreceniensis, 2, 71-75. https://doi.org/10.34101/actaagrar/2/15271
Received 2024-12-15
Accepted 2025-10-29
Published 2025-12-02
Abstract

Climate change today is no longer a question for the future. Climate change impacts not only human populations but also plant species, which are increasingly exposed to its negative effects. The increasing number of days of drought, the lack of precipitation and its unfavorable distribution are observed each year, which require adaptation. Chickpea (Cicer arietinum L.) is a drought-tolerant species characterized by deep root system that enables it to withstand prolonged periods without precipitation. Additionally, it is a thermophilic crop and tolerates moderate increases in average temperature." There is no great tradition of its cultivation and use in Hungary, but it has been cultivated by the Iregszemcse Research Institute since the 1970s. In addition to the positive aspects of its cultivation, it also has good nutritional values, outperforming in some parameters the beans (Phaseolus vulgaris L.) and peas (Pisum sativum L.) what are popular in Hungary. Its high protein and crude fibre content allows it to be used not only for human consumption but also for animal feed. The aim of this review is to describe the importance of chickpea and to identify the advantages and disadvantages of its cultivation.

References
  1. Ahmad, F.; Gaur, P.M.; Croser, J. (2005): Chickpea (Cicer arietinum L.). Genetic Resources, Chromosome Engineering and Crop Improvement—Grain Legumes; Singh, R., Jauhar, P.P., Eds.; CRC Press: Boca Raton, FL, USA, 2005, pp. 187–217.
  2. Ahmed, H.G.MD.; Naeem, M., Faisal, A.; Fatima, N.; Tariq, S.; Owais, M. (2023): Enriching the Content of Proteins and Essential Amino Acids in Legumes. In: Nadeem, M.A., et al. Legumes Biofortification. Springer, Cham. pp. 417–447. https://doi.org/10.1007/978-3-031-33957-8_18
  3. Igolkina, A.A.; Noujdina, N.V.; Vishnyakova, M.; Longcore, T.; Wettberg, E.; Nuzhdin, E.V.; Samsonova, M.G. (2023): Historical Routes for Diversification of Domesticated Chickpea Inferred from Landrace Genomics. Molecular Biology and Evolution, Volume 40, Issue 6, https://doi.org/10.1093/molbev/msad110
  4. Auld, D.L.; Bettis, B.L.; Crock, J.E.; Kephart, K.D. (1988): Planting date and temperature effects on germination, emergence, and seed yield of chickpea. Agronomy Journal, 80(6), 909–914.https://doi.org/10.2134/agronj1988.00021962008000060014x ,
  5. Bampidis, V.A.; Christodoulou, V. (2011): Chickpeas (Cicer arietinum L.) in animal nutrition: A review. Animal Feed Science and Technology, 168(1-2), 1–20. https://doi.org/10.1016/j.anifeedsci.2011.04.098
  6. Barthory, J.; Pongrácz, R.; Gelybó, Gy. (2007): Regional climate change expected in Hungary for 2071-2100. Applied ecology and environmental research, 5(1), 1–17.
  7. Cubero, J.I. (1976): The research on the chickpea (Cicer arietinum) in Spain. In: Proceedings of the International Workshop on Grain Legumes, 13-16 Jan 1975, India: International Crops Research Institute for the Semi-Arid Tropics. 117–122.
  8. Dixit, G.P.; Srivastava, A.K.; Singh, N. P. (2019): Marching towards self-sufficiency in chickpea. Current science, 116(2), 239–242. https://www.jstor.org/stable/27137831
  9. Dixit, G.P.; Srivastava, A.K.; Jayalakshmi, V.; Bindra, S.; Singh, S. (2022): Chickpea Breeding. In Fundamentals of Field Crop Breeding Yadava, D.K., Dikshit, H.K., Mishra, G.P., Tripathi, S. EDS.; Singapore. https://doi.org/10.1007/978-981-16-9257-4_20
  10. Ellouze, W.; Hamel, C.; Vujanovic, V.; Gan, Y.; Bouzid, S.; St-Arnaud, M. (2013): Chickpea genotypes shape the soil microbiome and affect the establishment of the subsequent durum wheat crop in the semiarid North American Great Plains. Soil Biology and Biochemistry, 63, 129–141. https://doi.org/10.1016/j.soilbio.2013.04.001
  11. FAO (2024): Production quantities of chickpea, dried. https://www.fao.org/faostat/en/#data/QCL
  12. Fülöp, É.; Treitz, M.; Treitz, J. (2016): Csicseriborsó, a szárazságtűrő fehérjenövény. Nébih, 2016.07.25.
  13. Haskett, T., Wang, P., Ramsay, J., O'Hara, G., Reeve, W., Howieson, J., Terpolilli, J. (2016): Complete genome sequence of Mesorhizobium ciceri strain CC1192, an efficient nitrogen-fixing microsymbiont of Cicer arietinum. Genome Announcements, 4(3), 10–1128. https://doi.org/10.1128/genomea.00516-16
  14. Jha, U.C., Nayyar, H.; Thudi, M.; Beena, R.; Vara Prasad, P.V.; Siddique, K.H. (2024): Unlocking the nutritional potential of chickpea: strategies for biofortification and enhanced multinutrient quality. Frontiers in Plant Science, 15, 1391496. https://doi.org/10.3389/fpls.2024.1391496
  15. Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar R.N. (2012): Nutritional quality and health benefits of chickpea (Cicer arietinum L.): a review. British Journal of Nutrition, 108(S1), S11–S26. https://doi.org/10.1017/S0007114512000797
  16. Lennert, J.; Kovács, K.; Koós, B.; Swain, N.; Bálint, C.; Hamza, E.; Király, G.; Rácz, K.; Váradi, M.M.; Kovács, A.D. (2024): Climate Change, Pressures, and Adaptation Capacities of Farmers: Empirical Evidence from Hungary. Horticulturae, 10, 56. https://doi.org/10.3390/horticulturae10010056
  17. Maheri-Sis, N.; Aghajanzadeh-Golshani, A.; Cheraghi, H.; Ebrahimnezhad, Y.; Ghalehkandi, J.G.; Asaadi-Dizaji, A. (2011): Dry matter degradation kinetics and metabolizable energy of chickpea (Cicer arietinum) straw in ruminants. Res. J. Biyo. Sci, 6, 635–638.
  18. Maya, M.; Maphosa, M. (2020): Current status of chickpea production: Opportunities for promoting, adoption and adapting the crop in Zimbabwe: A review. Journal of Dryland Agriculture, 6(1), 1–9.
  19. Mezősi, G., Mezősi, G. (2017): Climate of Hungary. In: Mezősi G. (ed.) with contributions by Timea Kiss. The Physical Geography of Hungary, 101–119. Springer Nature. Springer International Publishing AG. https://doi.org/10.1007/978-3-319-45183-1
  20. Nagy, B. (2022): Csicseriborsó. In: Izsáki, Z. and Kruppa, J. (eds). Szántóföldi növények vetőmagtermesztése 2. Vetőmagtermesztési technológia. Gabonafélék, hüvelyesek, gyökér- és gumós növények. 310–318.
  21. Nébih (2024): Nemzeti Fajtajegyzék, National list of varieties, Szántóföldi növények.
  22. Némethy, Zs. (2022): Hogyan termesszünk csicseriborsót? Agrofórum. 2022.02.17. https://agroforum.hu/szaktanacsadas-kerdesek/hogyan-termesszunk-csicseriborsot/
  23. Rachwa-Rosiak, D.; Nebesny, E.; Budryn, G. (2015): Chickpeas—Composition, Nutritional Value, Health Benefits, Application to Bread and Snacks: A Review. Critical Reviews in Food Science and Nutrition, 55(8), 1137–1145. https://doi.org/10.1080/10408398.2012.687418 ,
  24. Réthy, K. (2024): Csicseri, borsó, bab, lencse. ÖMKi – Ökológiai Mezőgazdasági Kutatóintézetek Közhasznú Nonprofit Kft.
  25. Sajja, S.B.; Samineni, S.; Gaur, P.M. (2017): Botany of chickpea. The chickpea genome, 13–24. https://doi.org/10.1007/978-3-319-66117-9_3
  26. Serrapica, F.; Masucci, F.; De Rosa, G.; Calabrò, S.; Lambiase, C.; Di Francia, A. (2021): Chickpea Can Be a Valuable Local Produced Protein Feed for Organically Reared, Native Bulls. Animals, 11(8), pp. 2353. https://doi.org/10.3390/ani11082353
  27. Singh, F.; Diwakar, B. (1995): Chickpea botany and production practices. Skill Development Series no. 16. International Crops Research Institute for the Semi-Arid Tropics: Patancheru, India.
  28. Singh, R.J.; Jauhar, P.P. (2006): Cereals. In Genetic Resources, Chromosome Engineering, and Crop Improvement, 187–219. https://doi.org/10.1201/9780203489260
  29. Singh, Z.; Singh, G. (2018): Role of Rhizobium in chickpea (Cicer arietinum) production-A review. Agricultural Reviews, 39(1), 31–39. https://doi.org/10.18805/ag.r-1699
  30. Singh, V.; Chauhan, Y.; Dalal, R.; Schmidt, S. (2021): Chickpea. In: Pratap, A.; Gupta, S. (eds.) The Beans and the Peas: From Orphan to Mainstream Crops, Woodhead Publishing, 173–215.
  31. Sofi, S.A.; Muzaffar, K.; Ashraf, S.; Gupta, I.; Mir, S.A. (2020): Chickpea. In: Manickavasagan, A., Thirunathan, P. (eds) Pulses. Springer, Cham, 55–76. https://doi.org/10.1007/978-3-030-41376-7_4 ,
  32. Szentes, O.; Lakatos, M.; Pongrácz, R. (2024): Precipitation conditions in Hungary from 1854 to 2022. Időjárás, 128(2). 1–152. https://doi.org/10.28974/idojaras.2024.2.3
  33. Van der Maesen L.J.G. (1987): Origin, history and taxonomy of chickpea. In: The Chickpea; Saxena, M.C., Singh, K.B., (eds.); CAB International: Wallingford, UK, 1987; 11–34.
  34. Vargas-Blandino, D.; Cárdenas-Travieso, R.M. (2021): Chickpea cultivation, a possible solution to climate change. Cultivos Tropicales, Vol. 42, no. 1, e09
  35. Vavilov, N.I. (1926): Studies on the origin of cultivated plants. Bulletin of Applied Botany and Plant Breeding 26, 1–248.
  36. Younis, K.; Ahmad, S.; Badpa, A. (2015): Malnutrition: causes and strategies. J. Food Process. Technol. 6, 1–434. http://dx.doi.org/10.4172/2157-7110.1000434