Articles

The effects of the climate change and the drought stress on potato production – A review

Published:
2025-06-08
Authors
View
Keywords
License

Copyright (c) 2025 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Kávássy, G., Szabó, A., & Szabó, Éva. (2025). The effects of the climate change and the drought stress on potato production – A review. Acta Agraria Debreceniensis, 1, 61-67. https://doi.org/10.34101/actaagrar/1/15256
Received 2024-12-09
Accepted 2025-04-15
Published 2025-06-08
Abstract

Potato (Solanum tuberosum) is the fifth most important cultivated crop according to its growing area and fourth by its production volume. Originated from the Andes of South America throughout the last five centuries spread over the world and became a global staple food. Over the years potato production has greatly evolved due to advancement in agrotechnology reflecting in higher yields contrary to the worldwide decreasing production area. The wide range of potato’s ability for adaptation allows it to thrive in many different soil types and climates making it a main contributor in food security. Nonetheless rising temperatures, extreme weather events, water scarcity driven by climate change imposes serious challenges and threats for global potato production.

This review presents the short history of potato cultivation, statistics of present and past production and agroecological needs for ideal farming. The review also attempts to explore the impact of climate change on potato growing spotlighting on drought and heat sensitivity.
To deal with these climate change induced challenges several mitigation options are proposed just as foliar applications of salicylic acid, hydrogen peroxide, silicon and micronutrients to elevate perseverance against abiotic stresses.

References
  1. Acevedo, A.F.G.; Lacerda, V.R.; Gomes, J.W. da S.; Avilez, A.A.; Sarria, S.D.; Broetto, F.; Vieites, R.L.; Guimarães, M.L.C. de S. (2023): Foliar salicylic acid application to mitigate the effect of water deficiency on potato (Solanum tuberosum L.). Plant Stress, 7, p.100135. https://doi.org/10.1016/j.stress.2023.100135
  2. Aliche, E.B.; Oortwijn, M.; Theeuwen, T.P.J.M.; Bachem, C.W.B.; Visser, R.G.F.; van der Linden, C.G. (2018): Drought response in field grown potatoes and the interactions between canopy growth and yield. Agricultural Water Management, 206, 20–30. https://doi.org/10.1016/j.agwat.2018.04.013
  3. Aliche, E.B.; Theeuwen, T.P.J.M.; Oortwijn, M.,; Visser, R.G.F.; van der Linden, C.G. (2020): Carbon partitioning mechanisms in potato under drought stress. Plant Physiology and Biochemistry, 146, 211–219. https://doi.org/10.1016/j.plaphy.2019.11.019
  4. Al-Jobori, K.; Al-Hadithy, S. (2018): Response of Potato (Solanum tuberosum) to Foliar Application of Iron, Manganese, Copper, and Zinc. Journal Title, 7, 358–363.
  5. Bentley, J. (2016): World History of the Potato. Revista Latinoamericana de la Papa, 19(2), 76–81. https://doi.org/10.37066/ralap.v19i2.235
  6. Beukem, H.P.; van der Zaag, D.E. (1990): Introduction to Potato Production. Wageningen: Pudoc, 208 pp. ISBN 90 220 0963 7.
  7. Bradshaw, J.E.; Ramsay, G. (2009): Potato Origin and Production. In: Advances in Potato Chemistry and Technology. Elsevier: Amsterdam, The Netherlands, 1–26.
  8. Cantore, V.; Wassar, F.; Yamaç, S.S.; Sellami, M.H.; Albrizio, R.; Stellacci, A.M.; Todorovic, M. (2014): Yield and Water Use Efficiency of Early Potato Grown under Different Irrigation Regimes. International Journal of Plant Production, 8, 409–428.
  9. Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change. Available at: http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf (Accessed: 7 October 2024).
  10. Crusciol, C.A.C.; Pulz, A.L.; Lemos, L.B.; Soratto, R.P.; Lima, G.P.P. (2009): Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science, 49, 949–954. https://doi.org/10.2135/cropsci2008.04.0233
  11. Daccache, A.; Weatherhead, E.K.; Stalham, M.A.; Knox, J.W. (2011): Impacts of Climate Change on Irrigated Potato Production in a Humid Climate. Agricultural and Forest Meteorology, 151, 1641–1653.
  12. El-Areiny, A.; Alkharpotly, A.; Gabal, A.; Abido, A. (2019): 'Potato Yield and Quality as Affected by Foliar Application with Cytokinin and Salicylic Acid', Journal of the Advances in Agricultural Researches, 24(1), 52–77.
  13. Evers, D.; Lefèvre, I.; Legay, S.; Lamoureux, D.; Hausman, J.F.; Rosales, R.O. et al. (2010): Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach. Journal of Experimental Botany, 61, 2327–2343. https://doi.org/10.1093/jxb/erq060
  14. Hasan, H.; Dais, M.; Suleiman, S. (2023): 'Leaves attributes and water use effeciency of potatoes grown under water stress after cycocel, salicylic acid, and humic acid sprays', DYSONA - Applied Science, 4(2), 62–70. doi: 10.30493/das.2023.395764
  15. Haverkort, A.J. (1990): Ecology of potato cropping systems in relation to latitude and altitude. Agricultural Systems, 32(3), 251–272. https://doi.org/10.1016/0308-521X(90)90004-A
  16. Haverkort, A.J.; Verhagen, A. (2008): Climate Change and Its Repercussions for the Potato Supply Chain. Potato Research, 1(3–4), 223–237. https://doi.org/10.1007/s11540-008-9107-0
  17. Harkness, C., Semenov, M.A., Areal, F., Senapati, N., Trnka, M., Balek, J. & Bishop, J. (2020): Adverse Weather Conditions for UK Wheat Production under Climate Change. Agricultural and Forest Meteorology, 282, p.107862.
  18. Hawkes, J.G.; Francisco-Ortega, J. (1993): The early history of the potato in Europe. Euphytica, 70, 1–7. https://doi.org/10.1007/BF00029633
  19. Hijmans, R.J. (2003): The effect of climate change on global potato production. American Journal of Potato Research, 80, 271–279. https://doi.org/10.1007/BF02855363
  20. Hossain, M.; Bazzaz, M.M.; Shawquat, A.; Altaf, H.; Kadian, M.; Mahmud-AL, A. (2014): Tuber Yield, Tuber Quality and Plant Water Status of Potato under Drought and Well-Watered Condition. Russian Agricultural Sciences.
  21. Jawad, T.M.; Al-Fadhly, A. (2016): Response of potato (Solanum tuberosum) to foliar application of zinc and manganese fertilized by organic fertilizer. IOSR Journal of Agriculture and Veterinary Science (IOSR-JAVS), I(4), 87–91. https://doi.org/10.9790/2380-0904018791
  22. Lahlou, O.; Ledent, J.-F. (2005): Root Mass and Depth, Stolons and Roots Formed on Stolons in Four Cultivars of Potato under Water Stress. European Journal of Agronomy, 22,159–173.
  23. Lazarević, B.; Carović-Stanko, K.; Safner, T.; Poljak, M. (2022): Study of High-Temperature-Induced Morphological and Physiological Changes in Potato Using Nondestructive Plant Phenotyping. Plants, 11(24), p.3534. https://doi.org/10.3390/plants11243534
  24. Levy, D. (1986): Genotypic variation in the response of potatoes (Solanum tuberosum L.) to high ambient temperatures and water deficit. Field Crops Research, 15, 85–96. https://doi.org/10.1016/0378-4290(86)90103-6
  25. Levy, D.; Veilleux, R.E. (2007): Adaptation of Potato to High Temperatures and Salinity: A Review. American Journal of Potato Research, 84(6), 487–506. https://doi.org/10.1007/bf02987885
  26. Lopez-Delgado, L.H.; Zaualeta-Mancera, H.A.; Mora-Herrera, M.E.; Rivera, F.X.; Flores-Gutierrez, I.M. (2005): Hydrogen peroxide increases potato tuber and stem starch content, stem diameter and stem lignin content. American Journal of Potato Research, 82, 279–285.
  27. Love, S.L.; Manrique-Klinge, K.; Stark, J.C.; Quispe-Mamani, E. (2020): A Short History of Potato Production Systems. In: Stark, J., Thornton, M. & Nolte, P. (eds) Potato Production Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-39157-7_1
  28. Lutaladio, N.; Castaldi, L. (2009): Potato: The Hidden Treasure. Journal of Food Composition and Analysis, 22, pp.491–493.
  29. Ma, Y.Z., Pan, N., Su, W. et al. (2024). Soil Water Stress Effects on Potato Tuber Starch Quality Formation. Potato Research. https://doi.org/10.1007/s11540-024-09720-5
  30. Metwaly, E.E.; El-Shatoury, R.S. (2017): Impact of foliar application with salicylic acid on growth and yield of potato (Solanum tuberosum L.) under different irrigation water quantity. Journal of Plant Production, Mansoura University, 8(10), 969–977.
  31. Michel, A.J.; Teixeira, E.I.; Brown, H.E.; Dellow, S.J.; Maley, S.; Gillespie, R.N. et al. (2019): Water Stress Responses of Three Potato Cultivars. The New Zealand Institute for Plant and Food Research Limited, 25–37.
  32. Moussa, S.A.M.; Abo El-Fadl, N.I.; Agamy, N.F. (2012): Role of Hydrogen Peroxide in Improving Potato Tuber Quality. Alexandria Science Exchange Journal, 33(April-June), 73–88. https://doi.org/10.21608/asejaiqjsae.2012.3145
  33. Obidiegwu, J.; Bryan, G.; Jones, G.; Prashar, A. (2015): Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, p.542. https://doi.org/10.3389/fpls.2015.00542.
  34. Pielke, R.A. (2004): What is Climate Change? Energy & Environment, 15(3), 515–520. https://doi.org/10.1260/0958305041494576
  35. Pilon, C.; Soratto, R.P.; Broetto, F.; Fernandes, A.M. (2014): Foliar or Soil Applications of Silicon Alleviate Water-Deficit Stress of Potato Plants. Agronomy Journal, 106, 2325–2334. https://doi.org/10.2134/agronj14.0176
  36. Pinheiro, C.; Chaves, M.M. (2011): Photosynthesis and drought: can we make metabolic connections from available data? Journal of Experimental Botany, 60, 869–882. https://doi.org/10.1093/jxb/erq340
  37. Plich, J.; Boguszewska-Mańkowska, D.; Marczewski, W. (2020): Relations between photosynthetic parameters and drought-induced tuber yield decrease in Katahdin-derived potato cultivars. Potato Research, 63, 463–477. https://doi.org/10.1007/s11540-020-09451-3
  38. Reddy, B.J.; Mandal, R.; Chakroborty, M.; Hijam, L.; Dutta, P. (2018): A Review on Potato (Solanum tuberosum L.) and Its Genetic Diversity. International Journal of Genetics, 10, 360–364.
  39. Rodríguez-Pérez, L.; Ñústez L., C.E.; Moreno F., L.P. (2017): Drought stress affects physiological parameters but not tuber yield in three Andean potato (Solanum tuberosum L.) cultivars. Agronomía Colombiana, 35, 158–170. https://doi.org/10.15446/agron.colomb.v35n2.65901
  40. Rudack, K.; Seddig, S.; Sprenger, H.; Köhl, K.; Uptmoor, R.; Ordon, F. (2017): Drought stress-induced changes in starch yield and physiological traits in potato. Journal of Agronomy and Crop Science, 203, 494–505. https://doi.org/10.1111/jac.12224
  41. Rykaczewska, K. (2013): The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. American Journal of Plant Sciences, 4, 2386–2393. https://doi.org/10.4236/ajps.2013.412295
  42. Rykaczewska, K. (2015): The effect of high temperature occurring in subsequent stages of plant development on potato yield and tuber physiological defects. American Journal of Potato Research, 92, 339–349. https://doi.org/10.1007/s12230-015-9436-x
  43. Sárvári, M. (2022): Burgonya. In: Integrált növénytermesztés II.: Alapnövények. (ed. Pépó, P.), 243–273.
  44. Schafleitner, R.; Gutierrez, R.R.; Espino, R.; Gaudin, A.; Pérez, J.; Martínez, M.; Domínguez, A.; Tincopa, M.; Luz, R.; Alvarado, C.; Numberto, G. (2007): Field Screening for Variation of Drought Tolerance in Solanum tuberosum L. by Agronomical, Physiological and Genetic Analysis. Potato Research, 50, 71–85. https://doi.org/10.1007/s11540-007-9030-9
  45. Seleiman, Mahmoud F. et al. (2023): "Foliar Applications of ZnO and SiO₂ Nanoparticles Mitigate Water Deficit and Enhance Potato Yield and Quality Traits." Agronomy 13 (2): 466. https://doi.org/10.3390/agronomy13020466
  46. Smith, A.F. (2012): Potato: A global history. Reaktion Books, 142 pp.
  47. Stark, J.C.; Love, S.L.; King, B.A.; Marshall, J.M.; Bohl, W.H.; Salaiz, T. (2013): Potato cultivar response to seasonal drought patterns. American Journal of Potato Research, 90, 207–216. https://doi.org/10.1007/s12230-012-9285-9
  48. Toor, M.D.; Adnan, M.; Javed, M.S.; Habibah, U.E.; Arshad, A.; Mughees ud din, M.; Ahmad, R. (2020): Foliar application of Zn: Best way to mitigate drought stress in plants; A review. International Journal of Applied Research, 6(8), 16–20.
  49. Van Loon, C.D. (1981): The Effect of Water Stress on Potato Growth, Development, and Yield. American Potato Journal, 58, 51–69.
  50. Wadas, W. (2021): Potato (Solanum tuberosum L.) growth in response to foliar silicon application. Agronomy, 11(12), p.2423. https://doi.org/10.3390/agronomy11122423
  51. Wadas, W.W.; Dębski, D. (2021): Effect of silicon foliar application on the assimilation area and photosynthetic pigment contents of potato (Solanum tuberosum L.). Applied Ecology and Environmental Research, 20(2), 1369–1384. https://doi.org/10.15666/aeer/2002_13691384.
  52. Yaseen, E.; Yousry, M.; Moussa, S.A.M.; El-Gamal, A. (2014): Effect of hydrogen peroxide foliar spraying on tuber's quality of three potato cultivars. Journal of the Advances in Agricultural Researches, 19(1),. 60–81. https://doi.org/10.21608/jalexu.2014.160310
  53. Zhang, P.; Yang, X.; Manevski, K.; Li, S.; Wei, Z.; Andersen, M.N.; Liu, F. (2022): Physiological and Growth Responses of Potato (Solanum tuberosum L.) to Air Temperature and Relative Humidity under Soil Water Deficits. Plants, 11(9), p.1126. https://doi.org/10.3390/plants11091126