Search

Published After
Published Before

Search Results

  • The in vitro and in vivo anatomical structure of leaves of Prunus x Davidopersica ‘Piroska' and Sorbus rotundifolia L. ‘Bükk szépe'
    92-95.
    Views:
    212

    Immature in vitro leaves showed similar structure of the mesophyll tissue to the immature field-grown (in vivo) leaves of Prunus x davidopersica `Piroska'. Mature leaf anatomical characteristics of in vitro plantlets differ from the field-grown plants. The mesophyll tissue of in vitro plantlets were thinner than the in vivo plants and consisted of only one layer palisade parenchyma, the shape of the cells and the structure of spongy parenchyma basically differed from the field-grown plants. In the case of Sorbus rotundifolia similar anatomical differences were found both in vitro and in vivo as in the case of Prunus x davidopersica `Piroska'.

  • Pollen tube growth in sweet cherry (Prunus avium L.) styles following fully compatible, half compatible and incompatible pollinations
    63-68.
    Views:
    130

    In vivo as well as in vitro pollen tube growth studies along the style were performed, each with two pairs of sweet cherry cultivar combinations by means of fluorescence microscopy. In vivo studies showed that the percentage of pollen tubes penetrating the middle and basal section of the style was higher in the fully compatible 'Margit' x 'Alex' combination than in the half compatible `Germersdorfi 3' x `Alex' cross. The year effect was significant at P=0.] probability level. All pollen tubes in vitro stopped at the upper third of the style in the incompatible 'Vera' x 'Van' cross, whereas in the half compatible 'Alex' x 'Van' 50% of the pollen tubes penetrated to the lower third of the style. By in vitro fluorescence microscopy, it was possible to distinguish half compatible combinations from incompatible ones. Results obtained by in vivo technique only were much ambiguous.

  • Jerusalem artichoke (Helianthus tuberosus L.): A review of in vivo and in vitro propagation
    131-136.
    Views:
    492

    Jerusalem artichoke (Helianthus tuberosus L.) is an old tuber crop with a recently renewed interest in multipurpose improvement. It is a perennial tuberous plant rich in inulin and is a potential energy crop. During food shortages in times of war Jerusalem artichoke received more attention by scientists and farmers because of its multiple uses as a vegetable, medicinal plant, forage plant and source for biofuel. The energy crisis of the 1970s motivated research on Jerusalem artichoke for biofuel as the aboveground plant biomass and the tubers can be used for this purpose. There are different methods to propagate Jerusalem artichoke using tubers, rhizomes, slips (transplants derived from sprouted tubers), stem cuttings, seeds and tissue culture. So, this review was presented to highlight on propagation of Jerusalem artichoke via in vivo and in vitro techniques.

  • Isolation of living sperm cells and in vitro fusion of Torenia fournieri gametes
    81-85.
    Views:
    107

    In contrast to most angiosperms, Torenia contains a naked embryo sac and therefore has been considered since many years as an exciting model plant to study the double fertilization process of flowering seed plants. It is thus not surprising that the isolation of protoplasts from the female gametophyte has been reported already 20 years ago by Mol, the isolation of megaspores and megagametophytes has been published by the authors of this manuscript in 1996 and in 1999. The isolation of the male gametophyte and of sperm cells was published by the authors in 2004. The isolation of viable Torenia sperm cells is a crucial part of the elaboration of an in vitro fertilization system. Torenia sperm cells were isolated from in vivo — in vitro cultured pollen tubes. In this system pollen tubes first grow inside a cut style then follow their elongation in a solid isolation medium. The medium contained agarose in order to detain pollen tube contents. Released sperm cells and enzymatically isolated egg cells were collected and handled using glass micropipettes and transmitted to an electrofusion apparatus or polyethylene glycol containing media for fusion probes.

  • Effects of different pollination treatments in genotypes of Prunus salicina Lindl.
    141-146.
    Views:
    119

    The low productivity in the Japanese plum (Prunus salicina Lindl) is related with self-incompatibility characteristics, so other species or varieties that act as pollinators need to be present to improve fruit production. The objective of this work was to study the efficiency of pollination in different genotypes of P. salicina using treatments of natural self-pollination, cross-pollination with P. armeniaca cv. Giada and open pollination. These treatments were evaluated through viability techniques and in vitro and in vivo germination of pollen grains; the growth of pollen tubes along the pistil was also observed. Genotypes used in this study showed differences for each one of the pollination treatments. Some genotypes showed signs of self-sterility and interincompatibility with P. armeniaca cv. Giada, while others showed partial self-fertility characteristics or pseudocompatibility. Moreover, some genotypes showed a higher affinity coefficient with cv. Giada and these will be indicating a possible intercompatibility. These studies will be an important contribution breeding and selection of intra and intercompatible genotypes to be used in commercial orchards.

  • Luminescence variations in cucumber (Cucumis sativus L.) leaves derived from different regeneration systems
    50-52.
    Views:
    154

    Plants obtained from in vitro culture can show increased susceptibility to environmental stress conditions. In the process of their adaptation to natural conditions it requires monitoring of their physiological state. The methods used to check this phenomenon should estimate quickly and exactly the tolerance to suboptimal environmental factors. Such requirements are satisfied by the methods of measuring chlorophyll luminescence in vivo, e.g. fluorescence induction and delayed luminescence. The objects of our studies were cucumber plants regenerated from cultures of callus and embryogenic cell suspension, as well as the plants obtained from seeds. The plants derived from in vitro cultures displayed a poor physiological condition at the early phase of adaptation characterised by higher susceptibility both to stress caused by increased density of the light flux and low temperature (4 °C) in comparison with the plants obtained from seeds.