Keresés

Publikált ez után
Publikált ez előtt

Keresési eredmények

  • Generative Design of a Mechanical Pedal
    48-58
    Megtekintések száma:
    846

    Nowadays, there are various tools that support the initial stages of design available to use for engineers, the traditional Computer-Aided Design (CAD) has been implemented in the engineering components design and replaced manual drafting. However, with the advances and the rapid technology development, new trends emerged to cope with this evolution, namely, Generative Design, Topology Optimization, and Generative Engineering Design. The method is based on numerical algorithms that generate a variety of design and modelling options based on the criteria and constraints set by the designer to allow further design exploration. Proposed in this paper is an implementation of the generative design of a mechanical pedal with further finite element analysis.

  • Application of Topological Methods in the Development of Vehicle Components
    67-75
    Megtekintések száma:
    106

    Many areas of the industry are characterized by continuous changes, which define new directions of development in product design. The development of computers and software, the spread of modern production tools and the development of material technology make it possible to expand traditional production technologies with modern processes. Integrated CAD systems have occupied their place in the product design and development process for decades, reforming classical design methods. Popular optimization procedures in integrated CAD systems, such as shape optimization, topological optimization and the new generative design process, provide effective solutions for design engineers in more and more industrial application areas. Experience shows that modern design methods can be used in many areas of industry. The appearance of metal powder printing and additive technology make it possible to test the designed prototypes or even to produce the final products. The following article aims to support the above with the help of a case study.

  • Topology Optimization of Automotive sheet metal part using Altair Inspire
    143-150
    Megtekintések száma:
    836

    In an optimization problem, different candidate solutions are compared with each other, and then the best or optimal solution is obtained which means that solution quality is fundamental. Topology optimization is used at the concept stage of design. It deals with the optimal distribution of material within the structure. Altair Inspire software is the industry's most powerful and easy-to-use Generative Design/Topology Optimization and rapid simulation solution for design engineers. In this paper Topology optimization is applied using Altair inspire to optimize the Sheet metal Angle bracket. Different results are conducted the better and final results are fulfilling the goal of the paper which is minimizing the mass of the sheet metal part by 65.9%  part and Maximizing the stiffness with Better Results of Von- Miss Stress Analysis,  Displacement, and comparison with different load cases.  This can lead to reduced costs, development time, material consumption, and product less weight.

  • Direct Optimization of an Automotive Sheet Metal Part Using ANSYS
    134-142
    Megtekintések száma:
    443

    Optimization of automotive parts nowadays is mainly used to design lightweight and cost-effective vehicle parts in order to improve the cost and efficiency. In this research, a sheet metal part was taken into consideration and optimized using direct optimization module in ANSYS to evaluate the process. An initial Finite Element Analysis (FEA) was done on the sheet metal part by adding forces and constraints in order to initiate direct optimization. The purpose of the optimization is to minimize the mass of the sheet metal part and maintaining a certain Factor of Safety (FOS) by automatically modifying the sheet thickness and the dimension of the side holes. As a result, the best candidate point with 23% mass reduction was found which complied with FOS value was selected for optimal geometry.

  • Optimization of the Sheet Metal Base of a Toggle Clamp Using Finite Element Method
    266-273
    Megtekintések száma:
    221

    Optimization relates to the ultimate yield strength and the maximum stress incident on the current model under critical working conditions and finds through iterative processing a way to compensate for the strength requirement without going beyond the desired mass limits. In this paper, the horizontal sheet metal base of a horizontal toggle clamp is optimised for mass reduction using the finite element analysis in the computer aided design software. The sheet metal base material is the ANSI32 Steel. In the design software, it is designed with the thickness of 7 mm and it is intended to support a workload of up to 750 N. The constraints were a fixed point added at all the holes and at the bottom surface of the sheet metal base. A number of iterations were made for the 750N loading force across the base plate to run the simulation. For optimization, the aim was to minimize the mass of the base plate. The design parameters  were Von Mises, factor of safety and displacement. The variables were the slots’ width and material thickness along the mid-surface of the sheet metal. The mass was reduced by more than thirty per cent overall.

  • Generative Design of Articulated Rod of Radial Engine
    36-47
    Megtekintések száma:
    482

    The constant need for improvement drives humans to look for the best possible option in every field. Computer Aided Design (CAD) is no exception, to follow the best method of designing a product and finalizing it, researchers came up with an idea to generate multiple designs using fixed input values and finalizing the most appropriate one. The objective is achieved using an iterative design process based on algorithms by a specific software. Generative design introduces a new experience based on the Integration of machine dynamics in the manufacturing of objects and about experience. In this work generative design method was investigated on an articulated rod, one of the most important components of the rotary engine, to effectively improve the overall working performance of the engine and enhance its performance by decreasing its mass. Since fuel consumption by the machine can be greatly reduced by lowering the mass, so the goal is to minimize the weight of the rod while mechanical characteristics have to be within the acceptable values. Also, finite element analysis (FEA) was investigated on the part as to ensure the reliability of the rod before and after optimization.

  • Solid-Lattice Stem Optimization Design for Hip Implants
    39-46
    Megtekintések száma:
    428

    The goal of this study is analyzed and design a methodology to reduce stem mass, through topology and lattice optimization of a Ti-6Al-4V hip implant, meeting yield stress requirements. Four optimization cases were studied: Topology optimization (1), Lattice design 100% (2), Lattice design 50% (3), Lattice design 25% (4). Five load cases from a study were applied for each optimization cases: Combined (LC1), standing-up (LC2), standing (LC3), going up stairs (LC4), jogging (LC5). The optimized cases design reduced stem mass approximately by 30% (1), 5% (2) ,8% (3) and 2% (4), compared with the total stem hip Ti-6Al-4V implant.

  • Component Development Using Topological Methods
    54-62
    Megtekintések száma:
    95

    The article aims to briefly summarize the design aids which can be used nowadays, such as topology optimization and generative design, which are common in integrated CAD systems. A case study is used to present the results and comparisons provided by the previously mentioned methods.

  • Optimáló módszerek alkalmazhatósága járműipari gumitermékek tervezésében
    358-363
    Megtekintések száma:
    154

    A gumitermékek tervezése során a velük szemben támasztott követelmények teljesítése céljából általánosan használt a méret, az alak vagy a topológia optimálási módszer. A vizsgált termék alakja a legtöbb esetben igen bonyolult, továbbá működése közben érintkezésbe lép egyéb alkatrészekkel is. Jellemzően nagy deformációnak van kitéve, melyre a gumi alapanyag erősen nemlineáris tulajdonságot mutat. Ezen feladat analitikus megoldására nincs lehetőség ezért azt numerikus úton kell keresni, melynek futtatása igen időigényes folyamat. Ebből adódik a kutatásom célja, mely a különböző optimálási eljárások hatékonyságának és számítási költségének összehasonlítása. Jelen dolgozat célja az elérhető optimáló algoritmusok alkalmazási lehetőségeinek felkutatása járműipari gumitermékek alakoptimálására. Ismertetésre kerül több helyettesítő modellen végzett optimum kereső eljárás továbbá számos direkt kereső módszer is.

  • Topology optimization and rim design
    92-101
    Megtekintések száma:
    294

    A goal of this article is to show the development of the car wheel rims along with the progress of the manufacturing technologies over the past few years. To achieve this goal, topology optimization and generative design usage have been reviewed in this work. The research has focused on the main factors, which affect the life of car wheel rim, and it has shed the light on the effect of the topology optimization and the generative design on the manufacturing of the car wheel rims. Since the main factors above-mentioned are the: forces, material preferences and topology optimization, the study has covered the results of the studies made on each part along with the technology progress. Moreover, the article has explained the methodology main steps of the topology optimization and the generative design and their principles.

  • Introduction to Design and Analysis of Torsional Vibration Dampers in Vehicle Industry
    310-324
    Megtekintések száma:
    343

    The crankshaft of today’s internal combustion engines with high performance output are exposed to harmful torsional oscillations originated from the unbalanced gas and inertial forces. To avoid the fatigue damage of engine components, caused by the undesired vibrations, torsional vibration dampers can be applied. Viscodampers are one type of the torsional vibration dampers, which operational fluid is silicone oil. For cost-effective R&D activities and production, finite element and finite volume numerical discretization methods based calculation techniques must be involved into the engineering work supported by the modern computer technology. The aim of this paper is to provide an insight into the multidisciplinary design and development process of visco-dampers in vehicle industry applications. Four different examples as structural, fatigue, CFD analyses and structural optimization have been introduced in the present work. It turned out from the static structural and fatigue analyses, that the investigated damper has safety factor over the limit for both static structural and fatigue analyses, so it is suitable for the given load conditions. In the structural optimization process 34.36% mass reduction has been achieved. According to the coupled fluid dynamic and heat transfer simulations a rather stagnating air zone evolved between the engine and the damper during the operation, which can cause efficiency reduction of cooling fins mounted onto the housing. In light of the numerical results, the suitable damper position has been determined for the highest heat transfer.

  • A biztonságos karbantartás humánbiztonsági szempontú megközelítése
    190-196
    Megtekintések száma:
    137

    Az üzemek berendezései műszaki állapotának romlása napjainkban általános jelenség. Mindez a hazai és nemzetközi hatósági tapasztalatok szerint egyre növekvő mértékben járul hozzá az üzemzavarok és balesetek bekövetkezéséhez. Azon üzemek, amelyek nem megfelelő állapot megőrzési stratégiával működtetnek napjainkban tervezési élettartamuk végéhez közelednek, így fokozott baleseti kockázatot jelentenek. Az öregedési folyamatokat gyakran gyorsítja a berendezéseket érő igénybevételek hatásainak és az állapotromlási mechanizmusok mértékének üzemeltető általi alulbecslése, illetve ennek következtében az állapot nyomonkövetési és karbantartási eljárások nem megfelelő kialakítása és működtetése. Munkánk célja a hazai és külföldi trendek vizsgálata a karbantartás modern optimalizálási módszerei tükrében és ehhez kapcsolódóan javaslattétel a karbantartási ütemezés optimalizálására vonatkozóan a hazai munkáltatók számára.

  • Exhaust System Muffler Volume Optimization of Light Commercial passenger Car Using Transfer Matrix Method
    132-138
    Megtekintések száma:
    191

    Nowadays, the automotive industry is focused on weight and size reduction. Main advantage of this weight and size reduction are improving the fuel economy. The specific fuel consumption of a vehicle can be improved through e.g. downsizing area of heat loss, if we focus on vehicle with weight reduction. Weight reduction can be done by replacing material or by changing the size (dimensions) of components. In the present work we have focused on Audi A6 muffler, troubleshooting and optimizing the muffler by changing pipe length of inlet and outlet, also by replacing the original mesh plate to porous pipe. Based on optimization, prototype has been built with the help of 3D design tool CATIA V5 and the calculations of transmission loss (TL) have been performed by MATLAB. Plane wave-based models such as the transfer matrix method (TMM) can offer fast initial prototype solutions for muffler designers. The principles of TMM for predicting the transmission loss of a muffler was used. Result of this present study of an existing muffler has been analysed and then compared with vehicle level test observation data. Noise level have been optimized for new muffler design. Other literatures were played significant rule for validate our results.

  • Topology Optimization of Acetabular Cup by Finite Element Simulation
    22-34
    Megtekintések száma:
    438

    Hip replacements typically consist of a four-part piece. Our research will focus primarily on the acetabular component. Several different types of materials can be used when creating a hip replacement implant ranging from plastic to titanium. Different materials are used to accommodate for allergic reactions or circumventing potential health risks. Aside from the material, the size of the components plays a factor in terms of durability; a larger diameter head might avoid dislodgement though it could increase wear and tear on the stems through constant friction. A patient’s force applied to the hip replacement is usually measured through a number of physical assessments. Finite element analysis (FEA), a computer-based method of data observation, allows for us to accurately simulate hip forces and their impact on the hip replacements. Through this, it becomes easier to predict and calculate the performance of specific designs. Generative systems can also be used to support performance analysis and optimization through assessing a multitude of cases, many of which apply in real-world scenarios. By applying both systems, we designed and modeled an acetabular cup that when measured decreased the mass from 129 grams initially down to 52 grams, a 60% decrease in total mass. Furthermore, the design we created lessened the trauma on the piece through distributing force across the entirety of the piece rather than specific segments only. This shows an increased durability and life expectancy when compared to usual acetabular cups.

  • Use of ANSYS Software for the Acetabular Cup Structure Analysis out of the Hip Implant
    1-6.
    Megtekintések száma:
    358

    Modelling the hip implant has been one of the most important researches over the past few decades. In addition, using the ANSYS software for this purpose is well-known procedure to understand the real reaction of the hip implant parts during the daily life of the installed part. This study is to focus on the practical part of the use of ANSYS software to analyse the performance of the hip implant through the feature of structure analysis available in the ANSYS. The research applies the static loads behaviour only with the help of the static structural analysis to view the advantages and the disadvantages of every design, which helps us estimate the implant’s behaviour. The study investigates the optimization of the acetabular cup using the lattice optimization along with the infill option available in the ANSYS software in order to optimize the stress and the fixture of the cup inside the pelvis.

  • Mechanical Design and Finite element Analysis for Acetabular cup
    23-35
    Megtekintések száma:
    135

    Hip replacements typically consist of a four-part piece. Our research will focus primarily on the acetabular component. Several different types of materials can be used when creating a hip replacement implant ranging from plastic to titanium. Different materials are used to accommodate for allergic reactions or circumventing potential health risks. Aside from the material, the size of the components plays a factor in terms of durability; a larger diameter head might avoid dislodgement though it could increase wear and tear on the stems through constant friction. A patient’s force applied to the hip replacement is usually measured through a number of physical assessments. Finite element analysis (FEA), a computer-based method of data observation, allows for us to accurately simulate hip forces and their impact on the hip replacements. Through this, it becomes easier to predict and calculate the performance of specific designs. Generative systems can also be used to support performance analysis and optimization through assessing a multitude of cases, many of which apply in real-world scenarios. By applying both systems, we designed and modeled an acetabular cup that when measured decreased the mass from 129 grams initially down to 52 grams, a 60% decrease in total mass. Furthermore, the design we created lessened the trauma on the piece through distributing force across the entirety of the piece rather than specific segments only. This shows an increased durability and life expectancy when compared to usual acetabular cups.

Adatbázis logók