Search
Search Results
-
Neutral Inhomogeneity in Circular Cylinder Subjected to Axial Load on its Lateral Boundary
35-42Views:251In this paper we consider the problem of single circular elastic inhomogeneity embedded within a circular cylinder whose curved boundary surface is subjected to surface traction acting on axial direction. We investigate the displacement neutrality of the coupled system of host body and inclusion. Neutral inhomogeneity (inclusion) does not disturb the displacement, strain and stress fields in the host body. The deformation of the considered inhomogenneous cylinder is antiplane shear deformation.
-
HAZ Characterization of Automotive DP Steels by Physical Simulation
478-487Views:336DP steels were extensively used in the vehicles industry due to its extraordinary combined properties of strength, ductility, formability and weldability which contributed great significance in reducing strength to weight ratio and CO2 emission. High strength steel i.e. DP steels (3 different grades) were experimentally investigated and thermophysically simulated using Gleeble 3500 simulator to determine softening and hardening in heat affected zone. Samples were heated to different peak temperatures (1350 °C, 950 °C, 775 °C and 650 °C), two cooling time (t8.5/5 = 5 s and 30 s) and Rykalin 2D model were selected. The hardness and microstructure of the specimens were tested and analysed. For longer cooling time (t8.5/5= 30 s), we observed that softening occurs in all grade of investigated DP steels to all sub-regions. But for shorter cooling time i.e. t8.5/5= 5 s the softening is higher in intercritical HAZ compared to other sub-regions for all the types of DP steel with short cooling time (t8.5/5 = 5 s). However, the hardening zone in the CGHAZ occurs when Tmax is 1350 ºC for DP600, DP800 & DP1000 steels but it is more prominent in DP800 as compared to others two steel grade.
-
Polylactic Acid as a Potential Alternatives of Traditional Plastic Packagings in Food Industry
123-129Views:490Huge quantity of synthetic polymers is used as packaging materials in different fields of food industries. A significant part of these polymers applied as a primary, direct food contact construction. The scoped application area is the sweet industry. In this field Polystyrol (PS), Polypropylene (PP) and Polyethylene terephthalate (PET) have used but during the last fifteen years the usage of PET has been grown. In one hand the price of this material is efficient, form other hand the PET is the one of the most safe (for food industrial applications) petrol chemical plastic that can be used as primary or secondary food contact packaging material. To maximize the customer safety and minimize the environmental impact of traditional PET, a new bio-sourced and bio-degradable alternative polymer aimed to be used in this special food industrial segment. One of the potential alternatives is the Polylactic acid (PLA) that would be a possible substitute as it is compostable and produced from renewable sources and has good physical and mechanical properties [1].
-
Synthesis of Polylactic Acid (PLA) by Polycondensation Method
286-293Views:509The Polylactic acid (PLA) is compostable and natural renewable sourced plastic type. Its mechanical properties quite similar to the PET, therefore the PLA is a good alternative for strongly ruled food industrial application. The PLA only has one critical attribute – the relatively low glass transition temperature. According to the relevant literature the glass transition of PLA is in the range of 40-70°C. In light of this fact, this material can be used only in that segments of food industrial field where the packaging process temperature are under of the lower limit of Tg range. The actual Tg of a material is highly depends on the molar mass and material structure, therefore the molar mass and the structure of material should be designed according to the future requirements of application and procedures.
-
The implementation of Balanced Scorecard System in social enterprises using the social-cooperatives – compliance with the needs of external organisations
300-317Views:358To discover the major economic problems of social cooperatives, we have made a survey. The analysis of this survey stated that the quality of available labour force and the finding of the proper target markets are the biggest concerns of social cooperatives. By this survey a Balanced Scorecard model (BSC) was implemented, which is an adaptation of Bull’s model (Bull, 2006). Present paper demonstrates the BSC modul to satisfy the needs of external partners and authorities. These needs and the tracing indicators were determined, furthermore the frequency of the indicator measurement was also proposed.
-
Investigation of Aluminum Dross as a Potential Asphalt Filler
445-451Views:256There is a great concern about utilizing different waste materials all over the world. Stockpiling in landfills is not a final solution, therefore researchers try to find alternative methods to utilize these materials [1-5]. One potential area may be road construction. Fillers are one of the most important components of asphalt pavements. It has a dual role. First of all, these fine grained mineral materials (d<0.063 mm) enhance the cohesion with bitumen. Second is to fill the gaps between the particles to produce more compact mixture [6]. The aim of this research is to reveal the possibility of utilization of aluminum dross as a potential asphalt filler. This material, which is a by-product of aluminum casting process, is produced in large quantities year by year and its storage in landfills is not a proper solution. Therefore, there is an increasing demand to utilize this material. During the research material structural tests were made, which can characterize the samples (limestone powder, dross), and the cohesion between bitumen and filler can also reveal. Particle size distribution, BET specific surface area and porosity were investigated. Scanning electron micrographs were taken and oil adsorption test were also made.
-
Designing of Lab-scale Anaerobic Digester Equipped with Maxblend Impeller to Evaluate Effect of Mixing on Anaerobic Digestion
404-413Views:282Operational parameters can be easily controlled at lab scale experiments for an anaerobic digestion process. Our aim is to design a lab-scale digester equipped with an impeller to investigate how the geometry of impeller and different mixing modes effect the biogas yield of digester. Further, the methods of measuring the gas volume, gas composition, mixing intensity, torque, temperature are discussed in this article. The assembling of 4 liters digester is described which can be operated at various operating parameters which control the anaerobic digestion process. Mixing is very important to enhance efficiency of an anaerobic digester. To attain mixing Maxblend impeller is used in this lab-scale digester due to its better performance for mixing and power consumption. Various design consideration has been described.
-
Simulation of Hot Rolling by Cellular Automata
190-195Views:306Our research is focusing to one of the most complex and important production step of flat rolled products that is the simulation of hot rolling. During hot rolling two phenomena as work hardening and the process of regeneration of crystals has strong influence for physical properties of microstructure of aluminium alloys. It needs to be taken into account in case of rolling technology steps and development. When we talk about aluminium the dynamic softening in fact it is dynamic recovery that is followed by dynamic recrystallization. It goes in the same order of magnitude rate. But in steels the recovery has only a minor effect. Hot rolled and newly modified grain structure is influenced by these dynamic phenomena. Hot rolled grain structure goes through significant changes under further production steps like cold rolling and heat treatments. But aside from these intermediate production steps the microstructure that we get after hot rolling has significant effect for mechanical and grains structure of the final flat rolled product. Proper technology planning is essential that for cellular automata simulation method can ensure useable and good solution for the simulation of recrystallization.
-
Casting Issues of Thick-Walled High Pressure Die Castings
159-166Views:240Die casting is a manufacturing process for producing accurately dimensioned, sharply defined, smooth or textured surface metal parts. It is accomplished by injecting liquid metal at fast velocity and under high pressure into reusable steel dies. Compared to other casting processes, die casting is at the top end of both velocity and pressure. The high velocity translates into a very turbulent flow condition. The process is often described as the shortest distance between raw material and the finished product.
Pre-fill is a process technique that is the result of significantly delaying the start of fast shot beyond the “metal at the gate” position. It can be stated as a percentage of cavity fill or as a distance beyond metal at the gate.
-
Utilisation and Quality Management of Power Plant Fly Ash
329-337Views:332Over the past decades, both the residential and industrial energy demand has increased due to the continuously growing consumption and production. As a large share of the electricity is still produced using fossil fuels, the utilisation of the by-products is a contemporary and pervasive issue. Fly ash is generated in large quantities in coal-fired power plants and has been proven to be an appropriate raw material for various industrial uses. Among others, it is applicable as an additive and lightweight aggregate in the cement and concrete industry, can be used for CO2 sequestration, glass foam production, catalyst production, or as a base material for geopolymers, as well. Geopolymers are inorganic polymers produced via the reaction between solid alumina and silica containing or alkali silicate materials in alkali media. Due to their numerous advantageous properties and wide variety of utilisation possibilities, research on fly ash base geopolymers became widespread topic. The quality of fly ash is determined by technical requirements, and the degree of quality control requirements depends on the final use. In certain fields of applications, standards and regulations have already been created to ensure the consistent quality of the final products made from fly ash, e.g. in the cement and concrete industry. There are various methods for fly ash processing, however, the methods to achieve the necessary properties are not standardised.
-
The Pressure Characteristics of the Released Gases from Sand Cores
73-79Views:267The core packages used for the production of castings are generally made from cores of different quality (no- bake phenol, HB-phenol, and HB-furan) and resin quantity, to meet the various requirements for the casting. In our research, the effect of the amount of resin on the pressure of the gases evolved from the cores was investigated. Experiments have shown that increasing the amount of resin has a different effect on different binder systems.
-
Simulation of an Operating Machine in Dust Chamber
266-275Views:211Auxiliary equipment used in the automotive industry, such as generator, air conditioner, or starter, is often exposed to harsh conditions, for example splash water, frost, or serious dust load. Therefore, these auxiliary devices are intended to be prepared by the manufacturers to these conditions. The topic of this paper is a part of the analysis of the dust control of generators, which in principle is no different from the examination of other equipment. The flow around the generator and in the dust chamber was simulated by Ansys FLUENT.
-
Component Development Using Topological Methods
54-62Views:224The article aims to briefly summarize the design aids which can be used nowadays, such as topology optimization and generative design, which are common in integrated CAD systems. A case study is used to present the results and comparisons provided by the previously mentioned methods.
-
Application of Additive Technology in Precision Casting
43-56Views:326In this paper the surface of the prepared test specimens had been examined with light microscopy and surface roughness measurements. In order to improve the surface smoothness of PLA specimens, application of ethyl acetate was required. After this surface treatment, microscopic images were taken again. The melting and decomposition temperatures of the materials had been determined using derivatography. The chosen method was precision casting with gypsum molding. Also, the plaster molds had been burnt out according to the predefined melting and firing diagram. The measurement series shows that the samples produced by 3D printing can also be used in the field of precision casting. They provide greater freedom of design, more sophisticated pieces, and prototypes can be finished in a shorter amount of time.
-
CSR Reporting Practices of Hungarian Banks
70-81Views:272The disclosure of information on the exercise of corporate social responsibility (CSR) is the tool most frequently used by companies to promote understanding of the social and environmental performance of an organisation and to improve relationships with stakeholders. For most of the world’s largest companies, reporting on non-financial information appears to be a continuing trend, so it is essential to present the new corporate reporting trends of the 21st century. The disclosure of socially responsible information will be analysed, with a focus on the application of the Global Reporting Initiative guidelines related to CSR. Global Reporting Initiative (GRI) is the best-known framework for voluntary reporting of environmental and social performance by business worldwide. The main objective of the paper is to explore the corporate voluntary disclosure practices of the listed and non-listed banks in Hungary. The extent of voluntary disclosure has significantly improved for decades worldwide, but the situation is not that obvious regarding the Hungarian financial sector. This paper aims to describe the status of disclosure practices of corporate sustainability in the annual reports, sustainability reports or CSR reports of the banking industry in Hungary. Also, increased corporate visibility and financial risk increase stakeholder demand for transparency on the social impact of financial institutions and their CSR practices. Finally, the analysis and subsequent comparison of available CSR reports of banks will be presented.
-
Temporal Changes of Pyrite Oxidation Rate in Bolivian Sulphidic Mining Wastes
194-202Views:181Since the 70's, when huge sulphidic open pits were developed, the acidic rock drainage (ARD) become the leader problem of the sulphidic mining industry. Although the recycling is an essential technology, it cannot cover the demand alone, thus mining activity needs to continue. Acidity in mine drainage commonly requires most of the attention, but the main problem is the caused elevated level of metal mobility and leaching, which are generated by the increased rates of sulphide weathering under acidic conditions. The Itos mine is a polymetallic vein deposit in Bolivia, had been mined for silver and tin until 1990, leaving behind much and huge tailings and mine waste heaps, where quite often the pyrite content exceeds 10 %. Serious ARD effects take place in the mine waste heaps. These processes can be well characterized with the pH 1 or 2 of the seepage water, which forms serious alteration in the waste itself and the neighbouring rocks. In three consecutive years, the pyrite oxidation rate was investigated on the same 7 samples by humidity cell test. 5-6 months pauses were left between the humidity cell test periods, which mimics the alternation of wet and dry periods, typical for the place. The results give much more information, than the oxidation rate in the individual test periods, showing the changes by time. This applied method gave good result to characterize the behaviour of the waste in long-term. The column test was complemented with mineralogical analyses, such as electron probe micro analysis. The mineralogical and column test analyses show, that the changes of the pyrite oxidation rate split the samples into three different groups, one where the oxidation rate decreases, second where it increases with time and the third where oxidation rate is maximal and stays stable for several years.
-
Investigation of the Granulometric and Mechanical Properties of Inorganic Used Sand
302-308Views:261This paper examines the use of a modified inorganic binder in metal-alloy casting. The results of investigations regarding the effect of reusing the used sand multiple times without reclamation. The technological properties of silica sand with inorganic binders were presented, two different temperatures were applied to make the used sands. After lump crushing the inorganic used sand was recycled in order to make a new sand mixture. Our work was focused on the effect of multiple usage of inorganic used sands on the mechanical and granulometric properties prepared with modified inorganic binder.
-
Testing of Micro Switches for Garden Tools
206-213Views:173The aim of this paper is to introduce the design of testing method for the prediction of the life and acceleration methods of the micro switches applied in different type of garden tools. These products will be tested for complex stressing, for example higher temperature, humidity, current load and so on. Therefore, the most important information and multi-factor acceleration models are summarized, the Weibull, the lognormal and the exponential distributions which are suitable for performing and evaluating tests.
-
Effect of Heat Input on the Toughness Properties of S690QL Steel during Hardfacing
1-12Views:21In recent years, the use of high-strength steels in hardfacing process has become increasingly common. One typical industrial example is the case of hydraulic shears used in building demolition operations, where the components are exposed not only to significant abrasive wear but also to intense dynamic loading. The use of quenched and tempered high-strength steel grade S690QL has become particularly widespread in this field, primarily as the base material for the hardfacing applied to the most heavily loaded regions of demolition shears. However, quenched and tempered high-strength steels are highly sensitive to the effects of the welding thermal cycle, which typically cause detrimental changes in the microstructure and mechanical properties of the heat-affected zone. The thermal cycles occurring during hardfacing differ from those typical of fusion welding, and consequently, the structure and mechanical properties of the resulting heat-affected zone may also vary. In addition, the penetration depth of the hardface layer can differ, which may significantly alter the load-bearing cross-section of the high-strength steel and, thus, the in-service behavior of the component. In the experimental work, hardfaced samples were performed on S690QL base material using different levels of heat input, thereby producing varying penetration depths. The aim of the study was to determine the effect of penetration depth on the resistance of the hardfaced component to dynamic loading. The tests were carried out at both +20 °C and –40 °C. The results clearly demonstrated that samples with deeper penetration exhibited reduced toughness at both investigated temperatures.
-
Application of Nanomaterials in Food Industry and Agriculture
116-126Views:302Nanomaterials have unique application features which can mainly be associated with their size properties. These materials have much higher surface than the normal particle size variant of the same materials. Due to these properties, nanomaterials are widely used in the industry. Food industry and the agrarian sector are using these materials increasingly. The main goal of nano size components and additives are the improvement of some parameters of the food manufacturing process, the elongation of the best before date of the food and the improvement of the texture, stability and the consistence of the food. Probably, nanomaterials will play an important role in the development of the food industry, moreover, it can be anticipated that nanotechnology will also appear there and will influence the whole food chain. It should be noted that food industry is using several nano size class materials which are not referred to as nanomaterials. Some examples are the micelles of some proteins, like milk protein, and fatty acids. Considering all these, the aim of our work was to present a thorough review and summary of the current applications.
-
Application of Rexroth Controlling for Inverted Pendulum
174-179Views:259This paper deals with the control of an inverted pendulum. Balancing techniques are used in great many controlling problems. The inverted pendulum problem is often used as a benchmark. The theoretical background is well-known and easy to treat. A commercially available Rexroth axis controller and a CKK compact module are used to control the input of the system, which is usually applied in industrial fields. A test bench has been designed and built. A PLC based program has been developed to swing up the pendulum from the rest location to inverted position and LQR controller is designed to balance the system.
-
Effect of the Changes in Bulk Density and Granulometric Properties on the Strength Properties of the Moulding Sand Mixtures
116-122Views:326Foundry technology uses a lot of several natural materials. Sands use for preparing mixtures whereby making moulds or cores. Sand is defined as a granular, refractory major portion of mixture (90 – 98% in dependence on used binder). Sand properties depend on it has chemical and mineralogical composition; mainly particle size distribution and shape of grains and its size and sand surface texture. A comparative measurement of two quartz sand with different surface quality was carried out. Greensand mixtures were prepared to measure their permeability, compressive strength and wet tensile strength. The strength of sand mixtures has two main components. One of them is the cohesion of the binder; the other one is the adhesion between the binder and the foundry sand. The aim of this research is to determine the ratio of cohesion and adhesion within the strength values.
-
Investigation of Zeta Potential of Water Based Nanomagnetite-Bentonite Dispersions
54-66Views:278The stability of different type nanomaterials play an important role among recent scientific and industrial
challenges, including the examination of the effect of polymers, surfactants and their mixture on surface and electric surface properties and aggregation extent of dispersed particles, which are of utmost importance. Bentonite and its composite with different nanomaterials are frequently used for instance in environmental protection for wastewater treatment, since due to their great specific surface area they have excellent sorption properties. There are several publications in the literature for the application of bentonite in drilling muds. By using them the fluid loss can be decreased during the drilling process, the filtration of the fluid can be increased, it also improves the rheological properties and the formation damage can also be mitigated. During research the investigation and the analysis of the zeta-potential of nanoparticles and their composites at different pH and salt content can be an interesting topic. During our experiments the electric surface properties of nanomagnetite synthetized in laboratory (NM), cation
exchanged bentonite from Mád (Be) and the composite particles of these particles were investigated. Hybrid particles of different compositions (9:1, 7:3, 1:1, 3:7, 1:9) were analyzed at different potassium chloride concentrations (0.1 – 0.0001 M). The surface adsorption on the surface, i.e. the change in the surface charge can be traced well by analyzing the obtained zeta-potential values. The behavior of such systems was observed in the full pH interval, thus, valuable data were obtained regarding the colloidal stability. As for the stability, different requirements may emerge in practice, there are application fields where the colloidally stable system is advantageous, on the other hand, in some cases, ceasing the stabile system is the goal. Our investigations are of high importance in terms of stability and its characterization. -
Analysis of a Special, 3D Metal-Printed HPDC Tool Material
251-265Views:328High Pressure Die Casting (HPDC) is still the most productive metal-casting method of our time, however the more demanding are the industrial expectations, the more challenging it becomes to ensure the creation of the difficult cavity geometries and the thermal balance of the die-cast tool. New perspective is required, thus we can utilize high heat-conductivity tool steels and additive manufacturing technology.
-
PVC/LDPE Blends: Relationship Between Thermal/Mechanical Properties, Structure and Blend Behaviour
162-165Views:299In this paper the effect of LDPE content in PVC foams are examined on the structure of both the foam and the LDPE. We attempt to understand how LDPE content affects the structure of PVC in blends and how it changes the glass-transition (Tg). These parameters often provide important information related to the overall macromolecular structure of the polymer blend. Thermal analytical techniques such as differential scanning calorimetry (DSC) often used to determine the structural transformation of samples. The effect of the miscibility and composition of the PVC/LDPE foam blends on the thermal stability were also investigated.