Search
Search Results
1 - 5 of 5 items
-
Mathematics teachers' reasons to use (or not) intentional errors
263-282Views:35Mathematics teachers can make use of both spontaneously arising and intentionally planted errors. Open questions about both types of errors were answered by 23 Finnish middle-school teachers. Their reasons to use or not to use errors were analyzed qualitatively. Seven categories were found: Activation and discussion, Analyzing skills, Correcting misconceptions, Learning to live with errors, (Mis)remembering errors, (Mis)understanding error and Time. Compared to earlier results, the teachers placed substantially less emphasis on affective issues, whereas the answers yielded new distinctions in cognitive dimensions. In particular, teachers' inclination to see errors as distractions could be divided into two aspects: students misunderstanding an error in the first place or student forgetting that an error was erroneous. Furthermore, the content analysis revealed generally positive beliefs towards using errors but some reservations about using intentional errors. Teachers viewed intentional errors mainly positively as possibilities for discussion, analysis and learning to live with mistakes. -
Application of computer algebra systems in automatic assessment of math skills
395-408Views:37Mathematics is one of those areas of education, where the student's progress is measured almost solely by testing his or her ability of problem solving. It has been two years now that the authors develop and use Web-based math courses where the assessment of student's progress is fully automatic. More than 150 types of problems in linear algebra and calculus have been implemented in the form of Java-driven tests. Those tests that involve symbolic computations are linked with Mathematica computational kernel through the Jlink mechanism. An individual test features random generation of an unlimited number of problems of a given type with difficulty level being controlled flat design time. Each test incorporates the evaluation of the student's solution. Various methods of grading can be set at design time, depending on the particular purpose that a test is used for (self-assessment or administrative exam). Each test is equipped with the correct solution presentation on demand. In those problems that involve a considerable amount of computational effort (e.g. Gauss elimination), additional special tools are offered in a test window so that the student can concentrate on the method of solution rather than on arithmetic computations. (Another obvious benefit is that the student is thus protected from the risk of frustrating computational errors). Individual tests can be combined into comprehensive exams whose parameters can be set up at design time (e.g., number of problems, difficulty level, grading system, time allowed for solution). The results of an exam can be automatically stored in a database with all authentication and security requirements satisfied. -
Why some children fail? Analyzing a test and the possible signs of learning disorders in an answer sheet: dedicated to the memory of Julianna Szendrei
251-268Views:20Teachers and educators in mathematics try to uncover the background of the mistakes their students make for their own and their students' benefit. Doing this they can improve their teaching qualities, and help the cognitive development of their pupils. However, this improvement does not always support their students with learning disorders, since their problem is not caused by wrong attitude or lack of diligence. Therefore, it is the interest of a conscientious teacher to recognize whether the weaker performance of a student is caused by learning disorders, so the helping teacher can give useful advices. Although the teacher is not entirely responsible for the diagnosis, but (s)he should be be familiar with the possible symptoms in order to make suggestions whether or not to take the necessary test of the learning disorders.
In this article, through examining a test and the answer sheet of a single student, I show some signs that might be caused by learning disorders. -
Verification of human-level proof steps in mathematics education
345-362Views:12Automated mathematics tutorial systems need support from a reasoning module which can verify the correctness of students' contributions. However, current systems typically do not reason at a level similar to the student's reasoning level, and do not fully account for underspecified or ambiguous inputs. We present a domain-independent method for automatically verifying correct proof steps and detecting standard reasoning errors. We use a depth limited BFS proof search to determine and maintain multiple possible interpretations consistent with the given proof step, we are able to resolve or otherwise propagate underspecification and ambiguity which occurs due to unrestricted user input. Our approach has been implemented in ΩmegaCoRe. -
Fehleranalyse beim Lösen von offenen Aufgaben Ergebnisse einer empirischen Studie in der Grundschule
83-113Views:14Open problems play a key role in mathematics education, also in primary school. However, children in primary school work in many relations in a different way from learner in secondary school. Therefore, the (possibly) first confrontation with an open task could be problematical. Within the framework of an international paper and pencil test it was examined how far children of primary school notice the openness of a task and which mistakes they do during working on that task. In particularly are meant by openness different interpretations of the task, which all lead to a set of numbers with more than one element as a result. For evaluation, a common classification system was adapted by slightly modification of the original system.
1 - 5 of 5 items