Search

Published After
Published Before

Search Results

  • Notes on the representational possibilities of projective quadrics in four dimensions
    167-177
    Views:
    12
    The paper deals with hyper-quadrics in the real projective 4-space. According to [1] there exist 11 types of hypersurfaces of 2nd order, which can be represented by 'projective normal forms' with respect to a polar simplex as coordinate frame. By interpreting this frame as a Cartesian frame in the (projectively extended) Euclidean 4-space one will receive sort of Euclidean standard types of hyper-quadrics resp., hypersurfaces of 2nd order: the sphere as representative of hyper-ellipsoids, equilateral hyper-hyperboloids, and hyper-cones of revolution. It seems to be worthwhile to visualize the "typical" projective hyper-quadrics by means of descriptive geometry in the (projectively extended) Euclidean 4-space using Maurin's method [4] or the classical (skew) axonometric mapping of that 4-space into an image plane.
  • Béla Kerékjártó: (a biographical sketch)
    231-263
    Views:
    30
    Kerékjártó published more than 70 scientific papers mainly in the field of topology. He achieved his most important results in the classical transformation topology and in the theoretical research of the continuous groups. He was the author of three books: Vorlesungen über Topologie; Euclidean geometry; Study on the projective geometry.
  • Classical theorems on hyperbolic triangles from a projective point of view
    175-181
    Views:
    39
    Using the Cayley-Klein model of hyperbolic geometry and the tools of projective geometry, we present elementary proofs for the hyperbolic versions of some classical theorems on triangles. We show, in particular, that hyperbolic triangles have no Euler line.
  • Ein ungewöhnlicher Weg zu Jakob Steiners Umellipse eines Dreiecks und zur Steiner–Hypozykloide
    49-65
    Views:
    21
    In real projective geometry of triangles two problems of collinear points are discussed. The problems differ only from the running through the vertices of a given triangle ABC. Resolving the problems we find two cubic curves kS and kT . Affine specialization leads to the circumscribed Steiner ellipse about the triangle ABC and shows us this ellipse in more general surroundings. Euclidean specialization leads to Steiners three-cusped hypocycloid.