Search

Published After
Published Before

Search Results

  • The single-source shortest paths algorithms and the dynamic programming
    25-35
    Views:
    14
    In this paper we are going to present a teaching—learning method that help students look at three single-source shortest paths graph-algorithms from a so called "upperview": the algorithm based on the topological order of the nodes, the Dijkstra algorithm, the Bellman-Ford algorithm. The goal of the suggested method is, beyond the presentation of the algorithms, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In order to succeed in this object, teachers should present the mentioned algorithms as cousin dynamic programming strategies.
  • "Frontier algorithms"
    139-152
    Views:
    6
    In this paper we present a new method to compare algorithm design strategies. As in case of frontier towns the cultures blend, the so called "frontier algorithms" are a mixture of different programming techniques like greedy, backtracking, divide and conquer, dynamic programming. In case of some of them the frontier character is hidden, so it has to be discovered. There are algorithms that combine different techniques purposively. Furthermore, determining the programming technique the algorithm is using can be a matter of point of view. The frontier algorithms represent special opportunities to highlight particular characteristics of the algorithm design strategies. According to our experience the frontier algorithms fit best to the revision classes.
  • "Upperview" algorithm design in teaching computer science in high schools
    221-240
    Views:
    11
    In this paper we are going to present a teaching/learning method and suggest a syllabus that help the high school students look at the algorithm design strategies from a so called "upperview": greedy, backtracking, divide and conquer, dynamic programming. The goal of the suggested syllabus is, beyond the presentation of the techniques, to offer the students a view that reveals them the basic and even the slight principal differences and similarities between the strategies. In consensus with the Comenius principle this is essential, if we want to master this field of programming ("To teach means scarcely anything more than to show how things differ from one another in their different purposes, forms, and origins. ... Therefore, he who differentiates well teaches well.").
  • Algorithmics of the knapsack type tasks
    37-71
    Views:
    5
    We propose a new kind of approach of the teaching of knapsack type problems in the classroom. We will remind you the context of the general knapsack-task and we will classify it, including the two most popular task variants: the discrete and the continuous one. Once we briefly present the solving algorithm of the continuous variant, we will focus on the solving of the discrete task, and we will determine the complexity of the algorithms, looking for different optimizing possibilities. All these issues are presented in a useful way for highschool teachers, who are preparing students in order to participate in different programming contests.