Search

Published After
Published Before

Search Results

  • Dynamic geometry systems in teaching geometry
    67-80
    Views:
    30
    Computer drawing programs opened up new opportunities in the teaching of geometry: they make it possible to create a multitude of drawings quickly, accurately and with flexibly changing the input data, and thus make the discovery of geometry an easier process. The objective of this paper is to demonstrate the application possibilities of dynamic geometric systems in primary and secondary schools, as well as in distance education. A general characteristic feature of these systems is that they store the steps of the construction, and can also execute those steps after a change is made to the input data. For the demonstration of the applications, we chose the Cinderella program. We had an opportunity to test some parts of the present paper in an eighth grade primary school.
  • A proposed application of Monte Carlo method in teaching probability
    37-42
    Views:
    38
    Pupils' misconception of probability often results from lack of experience. Combining the concept of probability and statistics, the proposed application is intended for the teachers of mathematics at an elementary school. By reformulating the task in the form of an adventure, pupils examine a mathematical problem, which is too difficult for them to solve by combinatorial method. By recommending the simulation of the problem, we have sought to provide pupils with valuable experience of experimenting, recording and evaluating data.
  • Potential, actual and practical variations for teaching functions: cases study in China and France
    157-166
    Views:
    77

    This contribution is based on two major hypotheses: task design is the core of teachers’ work, and variation is the core of task design. Taking into account variation in task design has a profound theoretical foundation in China and France. Developing my PhD with two co-supervisors, in China and France, I wish to seize this opportunity for constructing an analytic model of “teaching mathematics through variation” making profit of this theoretical diversity. This model distinguishes between potential variation and practical variation and is based on the process of transforming potential variation into actual variation, and of using practical variation for rethinking potential variation. The design of this model is based both on theoretical networking, and on case studies, in France and China. In this contribution, we will focus on a critical aspect in the two cases, from potential to practical variation.

    Subject Classification: 97-06

  • Heuristic arguments and rigorous proofs in secondary school education
    167-184
    Views:
    32
    In this paper we are going to discuss some possible applications of the mechanical method, especially the lever principle, in order to formulate heuristic conjectures related to the volume of three-dimensional solids. In the secondary school educational processes the heuristic arguments are no less important than the rigorous mathematical proofs. Between the ancient Greek mathematicians Archimedes was the first who made heuristic conjectures with the methods of Mechanics and proved them with the rigorous rules of Mathematics, in a period, when the methods of integration were not known. For a present day mathematician (or a secondary school mathematics teacher) the tools of the definite integral calculus are available in order to calculate the volume of three dimensional bodies, such as paraboloids, ellipsoids, segments of a sphere or segments of an ellipsoid. But in the secondary school educational process, it is also interesting to make heuristic conjectures by the use of the Archimedean method. It can be understood easily, but it is beyond the normal secondary school curriculum, so we recommend it only to the most talented students or to the secondary schools with advanced mathematical teaching programme.
  • Looking back on Pólya’s teaching of problem solving
    207-217
    Views:
    229

    This article is a personal reflection on Pólya's work on problem solving, supported by a re-reading of some of his books and viewing his film Let Us Teach Guessing. Pólya's work has had lasting impact on the goals of school mathematics, especially in establishing solving problems (including non-routine problems) as a major goal and in establishing the elements of how to teach for problem solving. His work demonstrated the importance of choosing rich problems for students to explore, equipping them with some heuristic strategies and metacognitive awareness of the problem solving process, and promoting 'looking back' as a way of learning from the problem solving experience. The ideas are all still influential. What has changed most is the nature of classrooms, with the subsequent appreciation of a supporting yet challenging classroom where students work collaboratively and play an active role in classroom discussion.

    Subject Classification: 97D50, 97A30