Search
Search Results
-
Is it possible to develop some elements of metacognition in a Mathematics classroom environment?
123-132Views:90In an earlier exploratory survey, we investigated the metacognitive activities of 9th grade students, and found that they have only limited experience in the “looking back” phase of the problem solving process. This paper presents the results of a teaching experiment focusing on ninth-grade students’ metacognitive activities in the process of solving several open-ended geometry problems. We conclude that promoting students’ metacognitive abilities makes their problem solving process more effective.
Subject Classification: 97D50, 97G40
-
Prime building blocks in the mathematics classroom
217-228Views:148This theoretical paper is devoted to the presentation of the manifold opportunities in using a little-known but powerful mathematical manipulative, the so-called prime building blocks, originally invented by two close followers of Tamás Varga, to support discovery of various concepts in arithmetic in middle school, including the Fundamental Theorem of Arithmetic or as it is widely taught, prime factorization. The study focuses on a teaching proposal to show how students can learn about greatest common divisor (GCD) and least common multiple (LCM) with understanding, and meanwhile addresses internal connections and levels of abstractness within elementary number theory. The mathematical and methodological background to understanding different aspects of the concept prime property are discussed and the benefits of using prime building blocks to scaffold students’ discovery are highlighted. Although the proposal was designed to be suitable for Hungarian sixth graders, mathematical context and indications for the use of the manipulative in both primary and high school are given.
Subject Classification: F60, C30, E40, U60
-
Mapping students’ motivation in a problem oriented mathematics classroom
111-121Views:65This research focuses on mapping students’ motivation by implementing problem-solving activities, namely how the problem-oriented approach affects the students’ commitment, motivation, and attitude to learning. As a practicing teacher, the author faced difficulties with motivation and sought to improve her practice in the form of action research as described in this paper. Based on the literature, the author describes sources of motivation as task interest, social environment, opportunity to discover, knowing why, using objects, and helping others. The author discusses the effect of problem-oriented teaching on the motivation of 7th-grade students. In this paper, the results of two lessons are presented.
Subject Classification: 97C20, 97D40, 97D50, 97D60
-
Mathematical Laboratory: Semiotic mediation and cultural artefacts in the mathematics classroom
183-195Views:91Aim of this presentation is to summarize the influence of Tamas Varga on the Italian research and practice concerning didactics of mathematics since the 70s of the 20th centuries. While being in Budapest for the Conference I noticed that this influence was not known by most Hungarian mathematics educators. I guess that also in Italy, only the teacher educators of my generation know Varga’s influence on the teaching and learning of mathematics in primary school. Hence I start from a brief summary of development of mathematics curriculum in Italy (mainly in primary school) in the last decades of the 20th century. I focus some elements that may be connected with Varga’s influence and, later, some recent development of them.
Subject Classification: 97G20, 97-U6, 97A40
-
"How to be well-connected?" An example for instructional process planning with Problem Graphs
145-155Views:96Teachers’ design capacity at work is in the focus of didactical research worldwide, and fostering this capacity is unarguably a possible turning point in the conveyance of mathematical knowledge. In Hungary, the tradition hallmarked by Tamás Varga is particularly demanding towards teachers as they are supposed to be able to plan their long-term processes very carefully. In this contribution, an extensive teaching material designed in the spirit of this tradition will be presented from the field of Geometry. For exposing its inner structure, a representational tool, the Problem Graph is introduced. The paper aims to demonstrate that this tool has potential for analyzing existing resources, helping teachers to reflect on their own preparatory and classroom work, and supporting the creation of new designs.
Subject Classification: 97D40, 97D50, 97D80, 97G10, 97U30