Search

Published After
Published Before

Search Results

  • Flood model for the Bódva catchment
    12-26
    Views:
    150

    In term of floods the current area of Hungary has extensively been endangered. Modelling of flood processes – mainly following the hydrological events in the riverbed – has recently been developed. As far as protection dykes provide protection of the inhabited and agricultural areas, the flood models can run with acceptable preciseness. However, when dykes cannot withstand against the increasing load and a dyke burst occurs, fast and efficient protection measures shall be taken in the protected areas. The dynamic 4D Flood model presented in this paper makes possible a fast modelling of dyke burst occurring in the protected side and spreading of water mass, based on real parameters. For this reason the features of protected area shall be recognised, for example topology of creeks, features of agricultural and inhabited areas, parameters of roads, railways, rainwater drainage, buildings, natural conditions (soil parameters, meteorological characteristics, etc.). The results satisfy the comprehensive demands of the Directorate General for Disaster Prevention of Borsod-Abaúj-Zemplén County. In case of dyke burst, the completed Flood Model can run the expected events of the next hour in a few minutes. This time is enough for the specialists to bring operative decisions to protect the inhabitants and avoid material losses.

  • Heavy metal content of flood sediments and plants near the River Tisza
    120-131
    Views:
    47

    The River Tisza is Hungary’s especially important river. It is significant not only because of the source of energy and the value insured by water (hydraulical power, shipping route, stock of fish, aquatic environment etc.) but the active floodplain between levees as well. Ploughlands, orchards, pastures, forests and oxbow lakes can be found here. They play a significant role in the life of the people living near the river and depend considerably on the quality of the sediments settled by the river. Several sources of pollution can be found in the catchment area of the River Tisza and some of them significantly contribute to the pollution of the river and its active floodplain. In this paper we study the concentration of zinc, copper, nickel and cobalt in sediments settled in the active floodplain and the ratio of these metals taken up by plants. Furthermore, our aim was to study the vertical distribution of these elements by the examination of soil profiles. The metal content of the studied area does not exceed the critical contamination level, except in the case of nickel, and the ratio of metals taken up by plants does not endanger the living organisms. The vertical distribution of metals in the soil is heterogeneous, depending on the ratio of pollution coming from abroad and the quality of flood.

  • High water level observations along the upper course of the Olt River (Romania) from a hydrological modelling aspect
    10-19
    Views:
    190

    Along its upper course, the Olt River (Romania) flows through several settlements, which are endangered by flooding. The multiannual water flow at Tomești station, the first hydrometric station along the Olt River, is 1.51 m3 /s, but in case of extreme events the river flow reached even 41.8 m3 /s. The aim of this study is to analyze the flood events along the upper course of the Olt River (section between Tomești and Cârța settlements) by using the HEC-RAS and the HEC-GeoRAS hydrological modeling software programs. The river cross section model showed how the main channel narrowed (characteristic to some locations) which can be considered as one of the causes of a possible overflow.

  • Long-term analysis of River Tisza water level data with regard to the ecological water demand of floodplain water bodies
    16-32
    Views:
    233

    One of the main threats of our time is the increasing water demand not only globally, but also locally. These are often met at the expense of ecological water demand, jeopardizing the structural and operational conditions necessary to maintain good ecological status in aquatic and wetland habitats. This is why it is of great importance to explore possible water retention options. In 2019, based on the long-term data series on the water level of River Tisza, we studied the frequency and extent of flooding in the floodplain between Tiszabercel and Gávavencsellő, where there are valuable wetlands, including a ‘sanctuary’-type backwater. This was necessary because recently the floodplains have undergone negative changes. Their water volume has gradually decreased, their valuable wildlife has become rarer, some of them have completely dried out in the autumn and even one of them has burned out. From the analysis of the examined 48-years data, it could be concluded that flooding was relatively frequent in the sampled area, but the extent of water coverage had no significant effect either in space or time. It was also found that only water levels above 700 cm (based on the water meter of Tiszabercel, 98.36 mBf) could adequately ensure that the water bodies are filled up and flushed out. However, there is little chance of this, because of four reasons: (1) water levels of this height are becoming rare; (2) the duration and height of high water levels are mostly short in time; (3) water levels of several water bodies are artificially decreased; (4) the drainage effect of the River Tisza – which has been significantly incised after the river regulation – prevails in the area. Due to all, in the future, there would be a great need to maintain the water levels in the floodplain wetlands as efficiently as possible after the floods – for which we have made specific proposals for the places and methods to preserve the ecologically necessary amount of water.

  • Morphological grouping of fossil floodplain forms in the northeastern part of the Pannonian plain
    21-33
    Views:
    30

    The Bereg Plain is located in the northeastern part of the Pannonian Plain, close to the Carpathian Mountains. Clarification of the evolution of its topography is essential for the development of the whole area. The former single alluvial cone has been fragmented, some parts of it subsiding and others rising. The displacements of the subsided parts of the area were dominated by erosion processes, as in the Bereg Plain. As a consequence, a significant part of the sand in the area has been degraded and only traces of it remain in the Bereg Plain. The existing sand patches have been identified and classified using DEM. In the area identified 10 floodplain islands not yet mentioned in the scientific literature. The investigation of the numerous islands – hitherto unknown and be-longing to different morphological types – enabled us a reconstruction of the surface development of the Bereg Plain that is more differentiated and precise than ever before. Based on their morphogenetic properties, these floodplain islands can be divided into three main types: (1) erosion islands, (2) point-bars, (3) coastal dunes. In the area, I could recognize no pattern or re-gularity in the position of the individual forms of any type. In many cases, the direction of the longitudinal trends is perpendicular to one another, which excludes their Aeolian origin. The sediment of the floodplain islands mainly consists of medium-, small- and fine-sized sand, but the settlement of loess-mantled and loess-like layers among the sandy sediment of certain forms can also be observed. The layer with 15 % lime content and 53–60 % loess fraction (0.05–0.01 mm) – found in the 110–50 cm high section of the erosion island called the Homok-tanya in Mátyus – can be considered a typical loess, based on the detailed parameters. Its formation in all probability took place at the same time and under similar conditions than that of the more than 2 m thick aeolian loess mantle found in the Nyírség area, some 10 km west from there, which had accumulated before the Bölling period. In case of an erosion island 2.5 km to the south and lying some 2 m lower, such a loess mantle cannot be found anymore, despite the fact that the sandy layers of the two sediment series are almost completely identical. The background of this phenomenon is the more active and frequent, mainly erosional fluvial processes – because of the lower position –, which eroded the loess mantle. The composition of the surface sediments is de-termined by the absolute altitude as well. The cover sediment of the lower-lying islands is identical to the finishing silt-clay deposits found at the alluvial parts of the Bereg Plain, whereas the surface of higher-lying forms that have not seen flood for ages, is covered by sand or loessy sand.

  • The developement of red mud flood environmental information system and the methodology for the spatial analysis of the degraded area
    1-11
    Views:
    174

    The red mud disaster occurred on 4th October 2010 in Hungary has raised the necessity of rapid intervention and drew attention to the long-term monitoring of such threat. Both the condition assessment and the change monitoring indispensably required the prompt and detailed spatial survey of the impact area. It was conducted by several research groups - independently - with different recent surveying methods. The high spatial resolution multispectral aerial photogrammetry is the spatially detailed (high resolution) and accurate type of remote sensing. The hyperspectral remote sensing provides more information about material quality of pollutants, with less spatial details and lower spatial accuracy, while LIDAR ensures the three-dimensional shape and terrain models. The article focuses on the high spatial resolution, multispectral electrooptical method and the evaluation methodology of the deriving high spatial resolution ortho image map, presenting the derived environmental information database.

  • Land use changes and their effect on floodplain aggradation along the Middle-Tisza River, Hungary
    1-10
    Views:
    65

    Land-use changes and their effect on overbank sediment accumulation were investigated on the floodplain of Middle-Tisza River. Military survey maps (1783, 1860, 1883 and 1890) and aerial photos (1950, 1965, 1980 and 2000) were used to evaluate land-use changes and to calculate the vegetational roughness of the area. To determinate the rate of overbank sedimentation sediment samples were collected from a pit, the grain-size, content of organic matter, heavy metal content (Pb, Cu, Zn, Ni and Cd) and pH were measured. Until 1950 meadows and pastures were typical on the floodplain, gallery-forest was along the river, the oxbow-lake and the artificial levee. Notable landuse changes were detected in the second half of the 20th century, as the aerial photo taken in 1965 shows extensive forestry in the area. These land-use changes affected the average vegetational roughness, as it has been doubled since the disappearance of grasslands. Land-use changes highly affect the aggradation, as the increased roughness decreases the flood velocity on the floodplain, causing accelerated aggradation. Using Pb marker horizons and grain-size changes the studied sediment profile was compared to dated profiles (Braun et al. 2003), thus, the sediment accumulation rate could be determined for the periods of 1858-1965 and 1965-2005. According to our measurements the accumulation rate was doubled since 1965, very likely in connection with the doubled vegetational roughness.

  • Morphometric characteristics of a tropical river basin, central Kerala, India using geospatial techniques
    1-14
    Views:
    227

    The Thutapuzha watershed (TW) is one among the major tributaries of Bharathapuzha – the largest west flowing river in Kerala, India. Morphometric analysis was carried out to determine the spatial variations in the drainage characteristics and to understand the prevailing geologic variation, topographic information and structural setup of TW using Survey of India topographic maps and ASTER-DEM. Geoprocessing techniques has been used for the delineation and calculation of the morphometric parameters of the watershed. The TW sprawled over 1107Km2 and the study revealed that the watershed includes a sixth order stream and lower order streams mostly dominate the basin with a drianage density of 1.36 m/Km2  exhibiting highly resistant subsoil, dense vegetation, and low relief of surface nature . The study  indicate that rainfall has a significant role in the drainage development whereas the drainage pattern is controlled by structure and relief. The watershed of TW is moderate to well-drained and exhibited a geomorphic maturity in its physiographic development. The shape parameters revealed the elongated nature of TW having less prone to flood, lower erosion and sediment transport capacities and drainage network development in the watershed. This study strongly brings to light that the drainage morphometric parameters have the enormou spotentiality to unveil the hydro-morphologicalcharacteristics of the river basins. Integrating hydro-morphological characteristics with conventional watershed assessment methods would have a beneficial effect on judicious watershed management, which helped to formulate a comprehensive watershed management plan.