Search

Published After
Published Before

Search Results

  • Findings on the cultivation of potatoes in organic farming
    113-116
    Views:
    91

    This paper explores the effectiveness of organic and plastic mulching for potato production in the Czech Republic. The mulching with chopped grass (GM) and black textile mulch (BTM) were compared to non-mulching control variant (C) with mechanical cultivation. Especially in plots with BTM were first formed ridges and covered by the black polypropylene non-woven textile and then they were planting. During vegetation the infestation of Colorado potato beetle (CPB), weeds biomass, course of soil temperature and soil water potential were assessed. The results showed that surface of GM had a positive effect on soil temperature reduction, soil water potential depression. This study also indicated a positive effect of GM on the larvae of CPB diminution, on the other hand higher incidence of larvae and higher defoliation was observed in BTM. GM had a significant effect on the yield of potatoes. The yield of ware potatoes was higher by 27 % higher on plots with GM and by 16 % lower on plots wit BTM in comparison with C. NeemAzal T/S decreased statistically significantly % of defoliation and increased yield of ware potatoes by 35 % in comparison with control.

  • Examination and statistical evaluation of physico-chemical parameters of windrow composting
    33-38
    Views:
    234

     

    The treatment and utilization of plant and animal waste and by-products from agriculture is very diverse. Traditional environmental management practices for waste management have been retained through soil conservation and the applied of recycle degradable organic substances in soil. The management of by-products from agriculture (animal husbandry) is important because a closed loop can be created to utilize by-products (manure, feathers) from the production of the main product (eggs, meat, milk) and to form a raw material for a new product. It is important to treat the resulting by-products, especially deep-litter manure, as it has served as a basis for compost-treated manure to develop an organic-based, soil-conditioning product line. Poultry manure by itself is not suitable as a substrate for aerobic decomposition, so it has to be mixed with other substances (zeolite, bentonite, soil), because of its high nutrient capacity, it is an acidifying substance.

    The aim of this study was to compost the mixture of poultry manure and hen manure by the addition of zeolite and to monitor the composting process. It was also our aim to statistically determine the effect of the zeolite on parameters describing the composting process.

    The windrow composting experiments were set up in the composting area of the University of Debrecen, Institute of Water and Environmental Management. The composting experiment was 62 days long, during which the main parameters describing the composting process were continuously monitored: temperature (°C), moisture content (w/w%), electrical conductivity (mS/cm), organic matter content (w/w%), examination of nitrogen forms (w/w%). In this study, three factors were investigated: temperature, humidity, and pH. For statistical evaluation, R software and RStudio user interface were used. We developed a repeated measurement model, in which the fixed and random effects were determined for our parameters under study, and the resulting relationships were shown on interaction plots.

    Based on our results, the temperature of the prisms has become independent of the ambient temperature and the composting stages can be separated in both the control and the zeolite treated prisms. In the repeated measurement model, we proved that treatment, time and treatment: time interaction were significant at both temperature and pH.

  • The Effect of Tillage Treatments on Soil Temperature at Planting and on Corn (Zea mays L.) Yield
    40-44
    Views:
    113

    The effect of soil temperature was evaluated on the yield of the Occitan corn hybrid at a depth of 5 cm. We examined this effect on the time required from planting to emergence for three average durations: five, ten and fifteen days, all calculated from the day of planting. Winter plowing (27 cm), spring plowing (23 cm), disc-till (12 cm) treatments and 120 kg N per hectare fertilizer were applied. As a result of our analysis, we determined the post planting optimum soil temperatures for various time periods. The average soil temperature for a time period of 15 days post planting is the most usable for determining actual yields, followed by ten days, with five days proved to be the least usable (winter plow R2 = 0.86, spring plow R2 = 0.87, disc-till R2 = 0.64).

  • Examinations of soil waterbalance in different crop-rotation systems of maize
    41-49
    Views:
    76

    We examined the change of the time of water balance of soil in 25 years old experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture) in dry (2007) and rainy (2008) cropyear in maizestock. According to our findings the values of waterdeficit of soil of maizestock were much smaller in 2008 than values of last year in not irrigated and irrigated plots of three of crop-rotation systems because of favourable supply of precipitation. We found difference between values of waterdeficit of two irrigation treatments. We measured smaller values in irrigated plots of three of crop-rotation systems before sowing.  Waterstock of soil started to decrease with the rising of average temperature and despite of increasing of precipitation quantity in this way we calculated higher values of waterdeficit. Precipitation in August and high average temperature intensified the waterdeficit. Waterdeficit achieved highest values of croptime to front of September. We examined waterbalance of soilprofile in 0-200 cm and we concluded that the waterdeficit of the 80-120 cm soilzone was most intensiv in not irrigated and irrigated treatments because of significant rootmass. 

  • Impact of tillage systems on maize emergence
    129-136
    Views:
    63

    In Europe, there has been a significant change in the way tillage is approached in recent years. This change is due to a growing awareness among farmers, politicians and society as a whole that soil is not a renewable resource in itself. From an agricultural point of view, the greatest impact on soil condition can be achieved through the use of the applied tillage systems.  My research takes this approach as a basis when examining the different tillage systems and their impact on the environment. In this context, conventional and a variety of no-tillage systems are examined in this paper. As a next step, it is examined how the environmental conditions created by the different tillage systems influence the emergence of maize hybrids. The analyses are carried out in a multi-factorial, long-term tillage field experiment. The same batch of the same hybrid seed was sown in several crop years, and the effects of environmental conditions on the emergence process were examined. Environmental effects and emergence-related uptake were measured in the examined plots. Measurements of environmental effects included air temperature, precipitation, soil temperature measured at seeding depth, as well as % cover of stem residue on the surface in the treated plots. The first emergence time measurements of the sown crop in the plots of each treatment were compared and relationships between these factors were investigated.

  • Performance of agricultural factors on yield of  sweet corn (Zea mays L. Saccharata ) - A review
    143-156
    Views:
    56

     Sweet corn producers and industries require more reliable cultivars which could be accomplished by hybrid breeding. However, progressive phenological growth may be affected by different factors. In this paper, we analyze the key factors that determine the growth and yield of sweet corn. Environmental factors such as temperature and photoperiod were strong determinants of dates of flowering and harvest which are often crucial to yield in diverse climates and agricultural systems, besides the country's pedological conditions, especially soil fertility, affected phenological development. The effectiveness of fertilization in improving sweet corn growth performance was significantly influenced by the soil characteristics, the water supply, the genotype, and the agrotechnological factors. Therefore, genetic improvement of hybrids should be incorporated into the climate and soil elements to stabilize sweet corn yields in various agroecosystems. Decisions made in the sowing period are very significant, as up to 30% of the obtained yield may depend on making the proper choice. Deviation from the optimum date (either early or late sowing) may decrease yield. When deciding about the sowing date of maize, one needs to consider climate, soil quality, geographical location, temperature, weed infestation, sowing seed quality, and the ripening time of the hybrid to be produced.

  • Experiments for Isolating and Culturing Soil-borne Mycobacteria (Contemporary Publication)
    107-110
    Views:
    62

    On grounds of the several thousand tests performed in the field of this topic, the following conclusions may be arrived at:
    1. The informations available and the experimental data on soil mycobacteria are very incomplete.
    2. Of the 77 strains isolated from similar soil types so far, and adaptable for pure basic culture, 47 strains are confusingly similar, from morphological aspects, to the mycobacteria isolated from clinical material.
    3. The apparently homogeneous cultures isolated from the soil are generally co-infected and, therefore, the morphological, biochemical, and other physiological characteristics of the isolated strains can be studied only on base cultures after purification.
    4. For the isolation of the soil mycobacteria experiments qualified hitherto as most suitable processes the 4 or 1 per cent NaOH neutralized with H2SO4, and the 1 per cent NaOH or 1 per cent Na3PO4 treatments, on Gottsacker agar medium with plate or top pouring, at a temperature of 29 to 37 C°, in a soil suspension sequence of 1:500 to 1:5000 final dilution.
    5. The Ziehl-Nielsen staining of the isolated mycobacteria composed to sub-cultures is best performed by heating with an infra red radiator from above, instead of the gas flame used so far to heat from below.
    The repetition of the biochemical test of the hitherto isolated 77 purified strains is under progress, and will be reported on in our next scientific publication.

  • Effect of agrotechnical factors on the yield of the Grolim asparagus (Asparagus officinalis L.) hybrid on acidic sandy soil
    43-48
    Views:
    223

    Research of blanched asparagus has begun at the University of Debrecen Institutes for Agricultural Research and Educational Farm Research Institutes of Nyíregyháza in 2011. Establishment of the plantation took place in May 2011. The Grolim hybrid was used in the trial, 16 medium plot trial area has been formed under field conditions, with four repetitions and 36 m2 plot size. In the course of our studies, the effect of different nutriment supply methods (untreated, manure, sheep manure compost, fertilizer) has been analysed on the spear yield of the Grolim asparagus hybrid between 2013 and 2017.

    In our studies, the beginning of vegetative growth has been recorded upon the constant presence of 10 °C of average soil temperature in the case of the Grolim asparagus hybrid. The beginning and length of spear harvesting are both influenced by the time and dynamics of initial development in spring. During the analysed period, the dates of spear harvesting were various, the earliest being on 23rd March, 2014 and the latest on 23rd April, 2015; the rest of the three years have been varied within this one month interval. The total of heat units required for the vegetative development of spears has been determined; it provides important information for cultivation practice.

    Spear yields turned out to be hectic during the analysed period. In 2013 and 2014, yields have surpassed the amount of 50 kg/harvest period/plot in the case of every treatment version. However, in 2015 a significantly lower specific yield has been recorded due to the unfavourable weather conditions in spring; a yield decline of nearly 50% was recorded in the case of the control treatment compared to the previous years. Yield was also lower in the rest of the fertilization treatments compared to 2014; however, in these cases, the degree of yield decrease was around 5–10%, which suggests the yield stabilising effect of fertilization. In 2016, a slight yield increase was measured in comparison with the base year. In 2017, there was a decline of yield in the control treatment; however, the different fertilization treatments resulted in yield increase as compared to previous years.

    On the basis of our studies, it is clear that the best yield results have been provided by the artificial fertilization treatment in all of the five analysed years. It was followed by the sheep manure compost and manure treatments in terms of their effect on spear yield. During the three harvesting periods, the lowest yield on acidic sandy soil was recorded in the case of the control treatment. The most remarkable effect of nutriment treatments has been realised in terms of the decreased deviation of yield results, which perfectly represents the yield stabilising effect of nutriment supply in the case of perennial crops – asparagus – as well, even on a poor nutriment supply characteristic sandy soil.

  • The effect of irrigation on the yield and quality of maize (Zea mays L.) hybrids
    143-147
    Views:
    168

    In this study, the effect of water supply on the quality and productivity of different maize hybrids was observed.

    Maize production is influenced by many agro-technical factors such as nutrient supply, plant density, environmental factors, water supply and temperature. Good soil quality and adequate technology significantly reduce the unfavourable effect of crop year. The impact of fertilization, crop rotation, irrigation and plant density on maize yield was greatly affected by crop year and crop rotation. The main constituent (69–75% dry matter concentration) of maize seed is starch, however, its increase can be achieved only to a limited extent, as increasing the starch content will reduce other parameters, especially protein content. Significant nutrient content improvements can be achieved by appropriate hybrid-site connection and the use of adequate technology. Protein content reduction with optimal water supply can be positively influenced by the appropriate nutrient supply for the hybrid.

    The experiments were carried out at the Látókép Experimental Site of Crop Production on calcareous chernozem soil. The weather of the examined year, which was partly favorable for maize and partly unfavourable in other respects, was also reflected in the development of maize and yields achieved.

    In 2019, we were examining the hybrids of Kamaria (FAO 370), P 9903 (FAO 390), DKC 4351 (FAO 370) and KWS Kamparis (FAO 350–400). Due to the dry soil condition, sowing was delayed, however, the hybrids emerged ideally because rain arrived soon after sowing, which facilitated initial development. Young plants evolved rapidly and dynamically in the case of all hybrids. In terms of heat-demanding bread, the month of May was unfavourable to temperatures below the annual average, but the higher amount rainfall helped the development. However, due to the drier period in early July, 25–25 mm of irrigation water was applied to half of the experimental areas on July 1 and 15.

    The aim of our research was to determine the best population density for hybrids under favourable soil conditions (calcareous chernozem soil). In both irrigated and dry conditions, a crop density of 75,000 crops were the most favourable for the Kamaria hybrid. The P9903 hybrid in the case of a crop density of 85 crops proved to be ideal and the DKC4351 had an optimal population density of 95,000.

    However, it should be taken into consideration that, in the case of soils with poor water management, the drought sensitivity of the crop stand may increase at a population density of 95,000.

    As a result of irrigation, yield increased and the difference between the examined plant numbers decreased. The yield growth was relatively moderate (341 kg ha-1 – 1053 kg ha-1), which makes the economicalness of irrigation doubtful in the given year.

  • A tárolási feltételek hatása a kukorica Fusarium fertőzöttségére és toxin szennyezettségére
    28-32
    Views:
    221

    Corn samples harvested in 1997, 1998 and 1999 from different soil types were stored at different conditions (temperature, moisture content, state of kernels) for six months. The Fusarium contamination was examined by plate dilution method and the amount of mycotoxins (F-2, T-2, HT-2, DON, DAS) were determined applying HPLC method immediately after harvesting and in the third and sixth month of storage. The aim of our study was to find correlation between the ecological factors, storage conditions and the examined parameters mentioned above, as well as to prove them statistically. According to the examinations carried out after harvesting we could state that the soil type had no effect on the parameters. Analysing the effect of the years we found considerable differences. The Fusarium infection of corn samples in 1998, while the toxin contamination in 1999 was the highest. The results of storage experiment show that year (number of microscopic fungi, F-2, T-2, HT-2, DAS and total toxin content) and moisture content of kernels (F-2, T-2, and total toxin content) have a significant effect on the examined parameters. We could prove the effect of temperature on the T-2 content (samples with natural moisture content) and DON content (samples with 14% moisture content). Higher values were found at higher temperature storage. The ratio of damaged kernels influenced the DON concentration in the non- wetted samples and the number of microscopic fungi in the wetted samples.

  • Effect of extreme crop year on soil moisture in maize
    35-40
    Views:
    70

    We examined the change of the time of water balance of soil in 25 years old experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture) in two extreme cropyear in 2007 and 2009 in maizestock.
    According to our findings the values of waterdeficit of soil of maizestock were about 100 mm before the sowing time that grew because of considerable deficit of precipitation and high average temperature in months of summer. Values of waterdeficit achieved at the end of August the maximum and lessed a little bit to end of crop time. Decrease of waterstock stopped because of irrigation treatments in irrigated plots but the difference between two irrigation treatments (Ö1-Ö3) vanishedat the end of summer, waterdeficit were higher with 17 mm in monoculture in irrigated plot than value of not-irrigated plot. Considerabler precipitation in Jun effected on waterbalance of soils of three of crop-rotation systems favourable, rapid waterloss starting to april began to lessenat the end of May and started to increase from early in July. Precipitation in Jun had positiv effect on yield also.

  • Comparison of Pálfai’s drought index and the Normalised Precipitation Index in the North Great Plain region
    59-64
    Views:
    182

    Agriculture has always been an important role in economy, food supplies, sustainability of society and creation of job opportunities in Hungary. Our country has resource-related strength of agriculture, because we have more than 4.5 million ha for agricultural production. Agricultural production can be influenced by several factors, including climate, hydrology, soil conditions and antropogenic impacts. Climate determines the quality and quantity of the crop yields. The climate conditions in Hungary are variable and it shows spatial and temporal extremes. As a result of this, drought have become more frequent in our country (2003, 2007, 2009, 2012), which is reflected in the decline in yields as well. In the present study, Pálfai's Drought Index (PAI) and the Standardized Precipitation Index (SPI) were compared 2003–2012 in Debrecen. The temperature and precipitation data were calculated from data provided by a local meteorological station to work out PAI, while the SPI-3 index values were downloaded from the database of the European Drought Observatory. This allowed to drought assessment in a local and regional scale. Our study was supplemented with SPI-3, soil moisture anomalies, PAI and yields of wheat (Triticum aestivum L.) and maize (Zea mays L.) to evaluating the impact of drought on agriculture.

  • Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids
    35-41
    Views:
    369

    The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017.

    The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed.

    The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period.

    The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model.

    Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.

  • Microbiological and Chemical Characterization of Different Composts
    106-111
    Views:
    71

    Composting of agricultural waste is considered particularly important from the point-of-view of environmental protection. Degradation of organic substance results in a significant reduction of waste volume.
    The end product of the composting process, mature compost, can be used as soil coverage against excess loss of wastes, for mulching, for organic manure etc. The problem of composting has come into limelight in environmental studies and in agriculture.
    The quality of the mature compost is determined by physical, chemical and biological parameters of the composting process which, in turn, depend on initial composition of the raw materials, the technology, e.g. regular mixing and moistening and on environmental factors. Quality is the key question in compost use.
    We studied the composting process in compost windrows of different raw material composition. We measured temperature, humidity content, pH, organic substance content, nitrogen and carbon content.
    We counted the number of bacteria, microscopic fungy, ammonifying and cellulose decomposing microorganisms. We directed the composting process with turning weekly (to provide oxygen) and watering (to provide humidity content 40-60%).
    We set up windrows of 1 m3 volume from dry plant substances (cornstalk, pea straw, tomato stalk and crop, weeds) and cow manure not older than 1 week. The cow manure was used at ratios of 0%, 35%, 50%, 65% and 100%, respectively.
    We measured changes in compost temperature relationship with outside temperature until they were almoust the same. Humidity was 40-60% in most cases.
    At the beginning of the process, pH was slightly acidic-neutral; it later becomes neutral-slightly alkaline (pH: 6.93-8.02) as ammonia is liberated from proteins.
    At the end of the process, pH decreased again, due to humification.
    Organic substance content decreased as microorganisms mineralized them. Organic carbon content decreased gradually due to microorganisms used it as an energy.
    Total nitrogen content increased until middle of july and decreased gradually until than.
    The carbon/nitrogen rate were higher in the beginning, it decreased until july-august and increased by smaller degree until end of the process.
    The number of bacteria was higher in the first three weeks and between june-september. The number of cellulose degrading bacteria was the highest in the first three month, the number of ammonifying bacteria was the highest from the end of may until sepember.
    The number of microscopic fungy was significant in the second part of process, after july.

  • Impact of environmental changes resulting from different sowing dates on maize yield
    99-104
    Views:
    140

    Three Debrecen maize hybrids of different genotypes (Debreceni 285, Debreceni 377 and Debreceni 382) were examined on chernozem soil in a field experiment. During the two years of the experiment (2009–2010), we wanted to get to know how the examined hybrids reach to different sowing dates and what impact early, optimal and late sowing has on yield.

    In 2009, balanced soil and air temperature resulted in steady emergence. However, the low temperature in early April and the cooling down in mid-May 2010 caused a delayed emergence.

    The grain moisture content at harvesting and the high yield showed a strong crop year effect. In 2010, yield was much lower (1.664 t ha-1) and grain moisture was significantly higher (34%)than in 2009.

    In 2009, early sowing resulted in yield decrease (P<0.05), but it also significantly reduced grain moisture at harvesting (P<0.05). Although late sowing slightly increased yield (not significantly), but grain moisture at harvesting increased by 9.2%. In 2010, optimal sowing date was shown to be the best alternative from the aspect of yield, but there was no significant difference in comparison with early and late sowing. Grain moisture at harvesting greatly increased (13.3%).

    The Debreceni 382 maize hybrid reacted to sowing dates flexibly, neither early, nor late sowing affected its yield significantly and the grain moisture at harvesting showed 12% increase in the case of the late sowing date. In 2009, maize hybrids Debreceni 285 and Debreceni 377 reached their highest yield in the case of the sowing date which was shown to be optimal (23rd April), while the different sowing dates had no effect on yield in 2010.

  • Examination of the Effect of Cropyear on the Yield Potential and Yield Stability of Winter Wheat Varieties
    62-67
    Views:
    116

    Variety selection is one of the most important, determinative elements of sustainable winter wheat production. Yield potential, and yield stability are the most important elements in the variety selection of winter wheat, but baking quality parameters play an important role, too.
    Several winter wheat varieties were tested for yield and yield stability on chernozem soil in the Hajdúság (in the eastern part of Hungary), in the 2001-2002-2003-2004 cropyears. The management factors were the same for all cropyears. 15 varieties in early the maturity group, 14 varieties in the middle maturity group and 4 varieties in the late maturity group were tested in the above mentioned cropyears. The climatic conditions were average in 2001, dry in 2002, extremely dry in 2003, and very favourable in 2004.
    We obtained 5298-6183 kgha-1 yield from early maturity varieties, 5683-6495 kgha-1 from middle, 5694-6031 kgha-1 from late ones in the average of four years. The cropyears had strong influence on the yields, even on chernozem soil, and were characterized by excellent water – and nutrient – husbandry. Averaging of cropyears and genotypes, we obtained 6984 kgha-1 in 2001 (average cropyear), 5452 kgha-1 in 2002 (dry cropyear), 3120 kgha-1 in 2003 (extremely dry cropyear) and 8400 kgha-1 in 2004 (optimum cropyear), respectively. The yield differences between the minimum and maximum yields were 885 kgha-1 in early varieties, 812 kgha-1 in middle and 337 kgha-1 in late maturity varieties, respectively. The varieties characterized by high yield potential and the varieties characterized by good yield stability were different, so in variety selection we have to take both genetic traits into consideration. There were positive, significant correlations among the yields of winter wheat varieties (early, middle, late), the temperature of spring months. (March-April), and the rainfall of spring months (March-April) (R2=0,703**-0,768** and R2=0,681**-0,749**, respectively). We found a high negative correlation between the temperature of early summer months (May-June) and the yields of wheat varieties (R2= -0,856**- -0,918**).
    According to the results of our experiment, it is very important to harmonize yield potential and yield stability in the variety selection of winter wheat.

  • Effects of Site on Winter Wheat Quality 2002/2003
    100-107
    Views:
    114

    The demand of modern societies for high food quality is evident. Thus, it is important for agriculture to produce row materials that are valuable for nutrition and have favourable characteristics for food processing. For this we need a knowledge about the factors which determine the quality of products. One of the main features of plant production is the “immobility”. This way the characteristics of the field influence the quality of the product, like example winter wheat, which is the main cereal in Hungary and Europe.
    The Concordia Co. has charged the Central Laboratory of Debrecen University, Agricultural Centre with laboratory testing of the 2002/2003 winter wheat crop. The samples consist of thirteen winter wheat varieties from six different sites under the same cultivating conditions. Therefore, the important wheat quality factors were analysed solely against site conditions with the use of Győri’s “Z” index, which contains these parameters.
    Soils were tested first. In this experiment excepting the negligible differences between the sites, there were no linear relations found between quality factors, productivity and soil features. The case is the same with the relation between precipitation, temperature and quality parameters. However, it must be noted that additional soil analyses are required to interpret the extreme results obtained from Karcag.
    The calculated Győri’s Z-index shows relative stability concerning certain varieties, although considerable deviation can be found in varieties related to the sites. According to these results, it can bestated that winter wheat quality was not linearly influenced by soil and weather in the 2002/2003 vegetation period. As the same cultivation technology was used in the experiment, the index was determined by genetic features. It must be noted that these findings are relevant only to this experiment.

  • The Impact of Water Supply on the Quality and Health of Potato
    144-147
    Views:
    116

    Besides its effect on potato yield, water also has a significant impact on yield quality. Excess water (too much precipitation, over-irrigation) and the lack of water (lack of precipitation or irrigation) both trigger stress in the plant and can significantly worsen the quality of the yield (seed potato) and deteriorate the health of the plant and the seed potato. Excess precipitaton or irrigation water leaches nitrate-nitrogen under the rhizosphere, consequently, the amount of available nitrogen decreases leading to the deficiency of N in potato. If water cover (the maximally saturated state of soil) exceeds 8-12 hours, it can cause root destruction (because of the lack of oxygen), which leads to the wilting and later to the death of the plant. Abundance of water caused by excess precipitation or irrigation is a major problem primarily on sandy loam, loam and clay loam soils with bad structure and water management qualities, but also on any soils, which are over-irrigated or irrigated at an improper time. Symptoms of the lack of water are detectable mostly when the available water content of the soil (disponible water) decreases under 60-65%.
    In the present year, there was a lack of precipitation on the Great Plain, which can be compensated by proper irrigation. Unfortunately, this problem is further intensified by the high temperature, which results in faster ripening and accompanied with fluctuating soil moisture content, in the formation of secondary tubers.

  • Measurement of degradation on under-utilized natural turf
    115-121
    Views:
    137

    The role of turf serving animal husbandry is significantly declining with the decreasing number of grazing livestock in Hungary. Accordingly, the area of under-utilized or non-utilized turfs is increasing. At the University of Debrecen, Institutes for Agricultural Research and Educational Farm, Karcag Research Institute we studied four types of turf utilization in three repetitions on a salt meadow with Alopecurus pratensis. As a result of the performed examinations, we identified the composition of the flora structure on the investigated area and we measured carbon-dioxide circulation and soil moisture.

  • Application of AquaCrop in processing tomato growing and calculation of irrigation water
    183-187
    Views:
    310

    The area and volume of processing tomato production is increasing in Hungary. Irrigation is crucial for processing tomato growing. To save water and energy, it is important to know exactly how much water is needed to reach the desirable quality and quantity. AquaCrop is a complex software, developed by FAO, which is able to calculate irrigation water needs, several stress factors and to predict yields. A field experiment was conducted in Szarvas in processing tomato stands, under different irrigation treatments. These were the following: fully irrigated plot with 100% of evapotranspiration (ET) (calculated by AquaCrop), deficit irrigated plot with 50% of ET (D) and control (K) plot with basic water supply was also examined. Dry yield, crop water stress index and soil moisture were compared to modelled data. The yields in the plots with different access to water were not outstanding in the experiment. The model overestimated the yields in every case, but the actual and modelled yields showed good correlation. AquaCrop detected stomatal closure percentages only in the unirrigated plot. These values were compared to CWSI – computed from leaf surface temperature data, collected by a thermal cam in July – and showed moderately strong correlation. This result suggests that Aquacrop simulates water stress not precisely and it is only applicable in the case of water scarcity. Soil moisture data of the three plots were only compared by means. The measured and modeled data did not differ in the case of K and ET plots, but difference appeared in the D plot. The obtained results suggest that the use of AquaCrop for monitoring soil moisture and water stress has its limits when we apply the examined variables. In the case of dry yield prediction overestimation needs to be considered.

  • Agricultural relations of the increasing carbon dioxide emissions
    197-201
    Views:
    212

    Emissions of carbon dioxide (CO2) have deserved more and more attention of humanity since decades, but inspite of theme asures already taken there are no substantial results. CO2 is a very important chemical, one of the greenhouse gases, which on the one hand offsets the cooling of the Earth, but on the other hand the too high CO2 emission leads to the global warming. The emission from the soil contributes substantially to the global cycle. This type of emission is influenced by the soil moisture, temperature, the soil quality and the cultivation. Through our measurements we have studied the relationships between the type of cultivation and the emissions of carbon dioxide.

  • Potential use of bamboo in the phytoremediation in of heavy metals: A review
    91-97
    Views:
    287

    There are many literature sources focusing on the phytoremediation of woody plants, but there are only few dealing with the phytoremediation of bamboo plants. Phytoremediation technology has the advantages of little disturbance to the environment and low remediation cost. Bamboo mainly exists in tropical and subtropical regions. As an energy plant, bamboo has a fast growth cycle, large biomass, simple cultivation, high economic efficiency, and convenient harvesting, which highlights the advantages of bamboo in phytoremediation. In addition, bamboo plants have good tolerance and uptake ability to heavy metals and have high application potential and development value in uptaking heavy metal contaminated soil. However, due to climate, temperature and other reasons, bamboo cannot be widely planted in most countries. Research status of remediation of heavy metal contaminated soil by bamboo plants is summarized. The feasibility of its application in heavy metal contaminated soil is discussed in this paper. Aiming at the shortcomings of existing research, bamboo plants have a prospect in the field of plant phytoremediation for the future.

  • Effect of weather conditions on the protein content and baking value of winter wheat flour
    83-94
    Views:
    131

    We searched for connections between weather conditions (with its sub-parameters as precipitation and average temperature) and the yearly formation of two quality parameters (protein content and baking value) on three levels of mineral fertilization, based on the results of a variety comparison experiment on chernozem soil, to select those weather parameters and critical periods which have significant effects on the quality of winter wheat flour.
    We established that the protein content of winter wheat flour can be increased with increasing levels of mineral fertilizers. Protein content is lower and has higher deviation during non-fertilized conditions in different cropping years than on higher fertilization levels. Thus, it seems proved again that quality (as protein content) is mainly formed by the crop year, but can be improved with adequate agricultural engineering (with mineral fertilization in the present case). The higher sum of precipitation in May, and the lower average temperature after flowering, have the highest increasing effect on the protein content of flour of the examined parameters. Based on the results of the examined period, the rainier and warmer term than average before flowering and lower – average amount of precipitation and colder circumstances are favourable for higher baking values. The analysis with data of decades, proves the importance of the first half of May and the middle of June as especially important periods for quality formation. An increasing nutrient supply has different effects on the varieties; mineral fertilization increased the baking value of GK Öthalom winter wheat variety in almost every case, but the second level of fertilization decreased it in half of the examined years. Additionally, mineral fertilization played a role in the stabilization of the quality of highlighted varieties.

  • The significance of biological bases in maize production
    61-65
    Views:
    165

    The comparative trial has been set up in the Demonstration Garden of the Institute of Crop Sciences of the University of Debrecen, Centre for Agricultural and Applied Economic Studies, Faculty of Agricultural and Food Sciences and Environmental Management in 2012, with 24 hybrids with different genetic characteristics and growing periods. The soil of the trial is lime-coated chernozem, with a humus layer of 50–70 cm.

    The weather of the trial year was quite droughty; the monthly average temperature was 3–4 oC higher than the average of 30 years. High temperature, together with lack of precipitation occurred during the most sensitive phenophases of maize (flowering; fecundation, grain saturation).

    The following characteristics have been observed: starting vigour, date of male and female flowering, plant and cob height, dry-down dynamics during maturation and the change of yield composing elements has also been quantified. The yield was recalculated to 14% moisture content grain yield after harvesting.

    The beginning of the growing period was advantageous, therefore the analysed hybrids could grow a high (above 300 cm) and strong stem. The yield of the hybrids changed between 10.33 and 11.87 t ha-1, but as a result of the unfavourable climatic extremes, their genetic yield potential prevailed only at a rate of 30–40%. However, moisture content by the time of harvesting was good despite its early date (12th September); it remained under below 14% in most cases. Dry-down was measured on a weekly basis between 14th August and 5th September.

    The analysis of the qualitative parameters of the maize hybrids (protein %, oil % and starch %) resulted in significant differences. The most significant difference has been observed in the case of protein content (LSD5%=2.01). Oil content was the most advantageous in the case of hybrids belonging to the mid-late growing group (FAO 400). The X9N655 and 36V74 hybrids had the highest oil content (around 4%), while hybrids P9915 and 37F73 had significantly lower oil content. Starch content was above 70% in the case of every hybrid.

    Hybrid selection is highly important in terms of yield and yield security of maize, as well as the application of modern biological fundamentals and hybrid specific technology for the improvement of the level of cultivation technology.

  • Analysis of the photosynthetic parameters, the yield and the quality of winter wheat
    101-106
    Views:
    141

    The environmental adaptability of crop production is basically determined by the selection of biological background (plant species and
    varieties) suitable for the region and the site. The aim of our work is to parametrize the plant assimilation, its intensity, dynamics and the
    most important characteristics and the relationships to the quality in winter wheat trials. The measurements were carried out at the research
    site of the University of Debrecen in small parcel experiments. We measured the leaf net CO2 assimilation rate, stomatal conductance,
    intercellular CO2 level, the transpiration, the leaf temperature and the air temperature by the LICOR LI-6400 portable photosynthesis
    system in field trials on the nutrient supply. The soil of the experimental area is calciferous chernozem with favorable water regime.
    We have examined the photosynthetic activity, the productivity and yield stability of winter wheat varieties. We have compared the yield
    results, at similar agrotechnical conditions in seven cropyears. We also determined the quality parameters of the winter wheat varieties.
    Then we valued the yield stability of genotypes with the help of analysis of variance and linear regression equations. We have defined the
    connections between assimilation parameters, the yield stability and quality parameters of wheat varieties.