Search

Published After
Published Before

Search Results

  • Correlation analysis of relative chlorophyll content and yield of maize hybrids of different genotypes
    211-214
    Views:
    103

    In 2021, correlation between relative chlorophyll content and yield in three maize hybrids of different genotypes was examined. The data were collected at the Látókép Experimental Station of the University of Debrecen located on the Hajdúság loess ridge in Hungary. The soil of the small plot field strip plot trial, which was set up in 2011, was calcareous chernozem. Apart from the control treatment (without fertilisation), N fertiliser is applied in the form of base and top dressing. The base fertiliser containing 60 and 120 kg ha-1 N of nutrient applied in spring was followed by top dressing containing +30–30 kg ha-1 N in V6 and V12 phenophases. SPAD values measured at different phenological stages of the growing season increased by an average of about 28% up to 10 leaf stage for all three hybrids. In the pre-silking period (Vn), the relative chlorophyll content decreased by 8% on average. After an average increase of 14% in the tasselling and silking period, SPAD decreased by an average of about 29% at full maturity (R6).

    For the different fertiliser treatments, higher N doses resulted in higher yields. In the basal fertiliser treatment, the A 60 N dose resulted in an average 34% increase in yield, and the A 120 N dose resulted in an average 94% increase in yield compared to the control. The 60 kg ha-1 N basal fertiliser (A60) increased in the V6 phenophase with an additional 30 kg ha-1 N resulted in an average yield increase of 26%. When 120 kg ha-1 N of basal fertiliser (A120) was increased by an additional 30 kg ha-1 N in the V6 phenophase, only the Merida hybrid showed a significant yield increase (7%). No further yield increase was observed when V690 and V6150 treatments were increased by an additional 30 kg ha-1 N in the V12 phenophase. The yield of the Armagnac hybrid decreased by almost 20%, the yield of Fornad by 3% and the yield of Merida by 1%.

  • On-line and off-line solutions in the precision weed control
    249-252
    Views:
    118

    There are two directions of the development of the methods in precision weed controll. One is the on-line, either is the off-line solutions. The advantige off the on-line method is that it covers all the territory of the field, therefore there are no problems in sampilng methodology. At the same time picture processing is slow and the performance of the machines is low. We have choosen the off-line precision weed controll in Hungary to start with and we have solved the precision wedd controll of wheat, maize and sunflower successfully. We have also conducted on-line developments with the application of Weed Seeker sensor.

  • Using sensors in precision crop production
    267-270
    Views:
    118

    Proper plant nutrition that takes into consideration both the requirements of plants and ecological conditions is one of the most important precondition of successful plant production. An important element of the N-fertilization of wheat is that the optimum zone of nitrogen supply is significantly narrower than that of other plant species, therefore it can easily happen that we apply higher or lower nitrogen doses than the optimal one. A possible solution to this problem can be precision agriculture. Applying the methods of precision agriculture we can take into consideration the heterogeneity of fields. By applying precision methods either online or offline we can intervene faster than if we would rely only on regular soil and plant analysis procedures. The determination of the doses of nitrogen and the timing of application are influenced also environmental and
    economic aspects. The chlorophyll content of the leaves indicates the nitrogen status of plants, since there is a relationship between the nitrogen content and the amount of chlorophyll in the leaves. According to plant analysis results there was a strong and significant relationship between the values of the NDVI (Normalized Difference Vegetation Index)and the total nitrogen content measured in the leaves.

  • Scientific background of precision animal nutrition
    95-99
    Views:
    105

    Precision animal nutrition consists of meeting the nutrient requirements of animals as accurately as possible in the interest of a safe, high-quality and efficient production, besides ensuring the lowest possible load on the environment. This is facilitated by electronic feeding based on IT technology, an important but by far not the only tool of precision nutrition. In the present paper the following most important elements of precision nutrition are discussed: diet formulation, quality control of ingredients and compound feeds, reduction of the harmful effects of heat stress in pigs with different nutritional tools, application of the recent findings of the molecular genetics in animal nutrition, the relationship between genetics and animal  nutrition and reduction of the N and P excretion by nutritional tools.

  • The management and economical aspects of GPS based machine-control and tractor-implement sincronisation
    161-167
    Views:
    193

    Precision farming has an array of technological equipment, elements and complete systems which are in themselves suitable to create conditions for efficient farming, to reduce environmental load and to provide farmers with optimal return on their investment.

    On the leading edge of my research is to introduce the economic benefits of precision logistic optimization with satellite navigation in wheat and maize harvesting. My hypothesis, claiming that a well-organized system can increase the number of working days by 4 days per harvesting season in maize, and 2 days in wheat crop. If the farmer makes contract works for harvesting it means for him 2 or 4 days extra work by using the precision farming technologies with satellite communication system. Overall, as pertains to wheat and maize harvest seasons, yearly revenues can be increased by 7 760 000 HUF. I would like to introduce that the precision technologies increase combine costs by merely 5.4% which can be return in the first year of using.

  • Economic questions of precision maize production on chernozem soil
    293-296
    Views:
    122

    It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common implementation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
    of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
    During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

  • Application of GIS, precision agriculture and unplugging cultivation in plant breeding of Karcag
    49-56
    Views:
    151

    In the last two decades, the prevailing ecological conditions and climate change have caused negative effects. Therefore, a paradigm shift is needed in the field growing of plants. The latest inventions, digital technologies, precision cultivation are not enough, the mentality of the farmers is more important. For this reason, not only big financial sacrifices, but adequate receptivity are needed on behalf of farmers. Adequate skills and continuous self-education are necessary. The yield of plant growing farms is determined by ecological conditions to a 40% extent, genetic background of the seed has a 30% share and the applied agricultural technology has a proportion of 30%. In different agroecological conditions, bred varieties of plants have bigger tolerance to unfavorable factors of the regions and significant yield stability. Farmers, who buy and sow seeds, can only contribute to the genetic potential of the seeds with cultivation technology. Plant breeding provides stable genetic background and good quality seeds. Breeding activity – choosing variety proposants, breeding them, selection work, classical breeding process for 8-10 years – must create new landraces, which can produce balance, high yield and have good quality parameters in extreme ecological conditions, yearly excursion and have higher tolerance to unfavorable factors of the region giving significant production stability for farmers. In Karcag GIS technology, precision cultivation elements and soil-friendly agrotechnical methods have been introduced which largely support the aims of breeding and can also provide optimal cultivation conditions in extreme years. Because of the specificity of breeding the main aim is not only to increase yield but to provide harmonic growing for bred materials, to decrease the number and the cost of cultivation and to be punctual. In this study, applied new methods and technologies are introduced.

  • Study of drought stress correlation on yield and yield components of maize cultivars (Zea mays L.)
    67-73
    Views:
    160

    This article was investigated to study the correlation and analysis of drought stress regression on maize cultivars' yield and components. The variance analysis results showed a significant difference between drought stress levels in terms of plant height, total dry weight and number of seeds per row, the total weight of cob, grain yield, harvest index, stem diameter, and cob weight with protective leave. Also, there was a significant difference in ear weight without protective leaves, ear diameter, ear length, plant weight, 100-seed weight, and seed per ear on hybrid treatments. There were statistically significant differences between cultivars in plant height, leaf area, ear diameter, ear length, number of seeds per row, number of seeds per ear, the total weight of cob wood, 100-seed weight, harvest index, plant dry weight. The results of the correlation of traits for the mean levels of drought stress showed a positive and significant correlation between plant yield and plant height, seed per row, ear length and weight of 5 pieces of wood and also with a total weight of cob wood, ear weight with bark showed the highest correlation. There is a significant correlation between leaf area and stem diameter, plant weight, total dry weight at the probability level of 0.05. Correlation coefficients between traits in non-stress conditions showed a positive and significant correlation between grain yield and height, ear length and grain in the row, which was a significant increase compared to stress conditions. The correlation of traits under full stress conditions also showed that the correlation coefficient between cob length trait and positive height was positive and significant. From the study of correlation coefficients between maize traits in non-stress conditions, it can be concluded that the most important components of grain yield are cob length and grain per row. While the correlation coefficients under moisture stress conditions show that the grain trait in the row has a positive and significant correlation with yield, under stress conditions in the cob stage did not show any traits with correlation yield.

  • Development of precision apple production technologies in Institute of Water and Environmental Management
    97-101
    Views:
    176

    From the precision agriculture point of view, by the rapid development of the investigated technological elements – global positioning system (GPS), remote sensing (RS), global information system (GIS) – the number of services, which were not available in the past, because of their speed, complexity or price are increasing. The high accuracy high-tech instruments provide opportunity to elaborate several fruit production technologies, which aim is creating and operating water and energy safe quality fruit production systems. To evaluate these possibilities, experience was carried out in the Study and Regional Research Farm of the University of Debrecen near Pallag with the use of a GreenSeeker 505 Hand Held™ Optical Sensor Unit, and its interface the Trimble AgGPS FmX Integrated Display board computer, and a ScanStation C10 laser scanner by Leica. The results show the absolute applicability of these equipments in precision horticulture.

  • ZigBee technology in precision agriculture
    15-17
    Views:
    113

    ZigBee technology aims to completely satisfy the requirements set by precision agriculture, since this system makes it possible to collect data in an accurate and regular way. The cost of one module is rather favourable; therefore, damaged parts can be replaced quickly. Due to the modular structure, the system can be further developed easily. New units can be quickly incorporated into the network without any difficulty.

  • What does precision crop production hold for the future of soil science and plant nutrition?
    411-421
    Views:
    206

    The concept of precision agriculture is straightforward at the scientific level but even basic goals are blurred at the level of everyday practice in the Hungarian crop production despite the fact that several elements of the new technology have already been applied. The industrial and the service sectors offer many products and services to the farmers but crop producers do not get enough support to choose between different alternatives. Agricultural higher education must deliver this support directly to the farmers and via the released young graduates. The price of agricultural land must be higher if well-organized data underpin the production potential of the fields. Accumulated database is a form of capital. It must be owned by the farmers but in a data-driven economy its sharing will generate value for both farmers and the society as a whole.

    We present a methodological approach in which simple models were applied to predict yield by using only those yield data which spatially coincide with the soil data and the remaining yield data and the models were used to test different sampling and interpolation approaches commonly applied in precision agriculture. Three strategies for composite sample collection and three interpolation methods were compared. Multiple regression models were developed to predict yields. R2 values were used to select among the applied methods.

  • From Organic to Precision Farming (Contemporary Publication)
    81-86
    Views:
    66

    The paper presents a short review of the different types of farming systems:
    Biofarming, Organic farming, Alternatíve farming, Biodynamic farming, Low input sustainable agriculture (LISA)
    Mid-tech farming, Sustainable agriculture, Soil conservation farming, No till farming, Environmentally sound, Environmentally friendly, Diversity farming
    Crop production system, Integrated pest management (IPM), Integrated farming, High-tech farming
    Site specific production (SSP), Site specific technology (SST), Spatial variable technology, Satellite farming.
    Precision farming
    It concludes that the various systems are applicable in different ratios and combinations depending on the natural and economic conditions.
    The author predicts an increase in precision technologies , the first step being the construction of yield maps compared with soil maps and their agronomic analysis. Based on this information, it will be necessary to elaborate the variable technology within the field, especially for plant density, fertilization and weed control.
    The changes in weed flora during the past fifty years based on 10.000 samples within the same fields using the weed cover method are presented.

  • Horticulture applicability of 3D laser scanner
    75-78
    Views:
    156

    As a result of the technological development, remote sensing instruments and methods have become widespread in all segments of life (from precision agriculture through architecture to medicine). Among the innovative development of remote sensing instruments the 3D laser scanner is overriding importance. The horticulture applicability of terrestrial laser scanning technique is innovation in the precision agriculture, because it could be determine the structure of trees and branches, the canopy extension, which can help to recognize some biophysical parameters. The examination was carried out with Leica ScanStation C10 terrestrial laser scanner in the Study and Regional Research Farm of the University of Debrecen near Pallag. In this article I present the measuring principle, the parameters and horticulture applicability of the terrestrial laser scanner.

  • Combined traffic control of irrigation on heterogeneous field
    187-190
    Views:
    171

    In arid areas, such as Hungary, most climate models forecast a rise in water scarcity. Irrigated land accounts for 2% of agricultural land in Hungary, with most irrigation technology being relatively outdated. The aim of this research was to lay the foundation for a combined traffic management system for a water-saving precision irrigation system on an 85-ha field in the Tisza River basin's reference region. High-precision soil maps were created to support the water-efficient variable-rate irrigation system by selecting and selecting areas for different agrotechnical implementations and precision farming zones.

  • Challenges and limtations of site specific crop production applications of wheat and maize
    101-104
    Views:
    120

    The development and implementation of precision agriculture or site-specific farming has been made possible by combining the Global Positioning System (GPS) and the Geographic Information Systems (GIS). Site specific agronomic applications are of high importance concerning the efficiency of management in crop production as well as the protection and maintenance of environment and nature. Precision crop production management techniques were applied at four locations to evaluate their impact on small plot units sown by wheat (Triticum aestivum L.) and maize (Zea mays L.) in a Hungarian national case study. The results obtained suggest the applicability of the site specific management techniques, however the crops studied responded in a different way concerning the impact of applications. Maize had a stronger response regarding grain yield and weed canopy. Wheat was responding better than maize concerning plant density and protein content performance.

  • The precision livestock farming
    201-202
    Views:
    135

    The application of information technology is the response of the livestock farming to the demand of customer, legal and economical expectations. This technology is the socalled precision livestock farming (PLF). The elements of the PLF are: continuous monitoring of inputs, animal behaviour by sensors, an algorithm which converts these signals into a figure, this figure is compared to an optimum then adjustment of the input is followed, if it is necesary.

  • Topology in the fruit plantation
    253-257
    Views:
    167

    The localization of fruit trees, the topology of the branch structure and the spatial structure of the canopy are important to plan sitespecific agro-ecological and production technology projects in an orchard. The currently used instruments and technologies – in the precision agriculture – give opportunities to obtain these informations. The examinations were carried out in the Study and Regional Research Farm of the University of Debrecen near Pallag with the use of a GreenSeeker 505 Hand Held™ Optical Sensor Unit, and its interface the Trimble AgGPS FmX Integrated Display board computer. The collected spectral data were completed with the 3D point cloud by Leica ScanStation C10 laser scanner. The laser impulse data and the vegetation index values were integrated in a unified 3D system. The integration of the two special data collection system provides new opportunities in the development of precision production technology system. The results could be directly used in phytotechnology, water management, plant protection and harvesting in orchards. Our elaborated method can supply digital high spatial accuracy guidance data for development of the automated machines, which could provide some new developmental way in the immediate future.

  • Analysis of the plant physiological effects of late, artificial corn smut infestation using remote sensing methods
    31-35
    Views:
    112

    In Hungary, corn is also infected by several important pathogens. In this experiment, we analysed the plant physiological effects of artificial late cron smut infestation using remote sensing methods under field conditions We examined the experimental area from which the data comes from with a DJI Phantom 4 Multispectral Drone NDVI and NDRE indices were calculated and analyzed in GIS programs. Individuals treated with a higher dose remained much greener than the untreated control. They also showed significant differences within the indices used.

  • Experience at Russian State Agrarian University – Moscow Timiryazev Agricultural Academy on introduction and integration of precision agriculture technology
    73-76
    Views:
    99

    Traditional and precision agriculture technologies are compared on the basis of the field experiment. Problems of soil and crop survey and mapping are discussed.

  • Phytopathological aspects of precision agriculture
    135-139
    Views:
    87

    This paper illustrates the efforts based on the results obtained in the funding of precision agriculture, during more than two decades of cooperation between University of Debrecen and University of Oradea, within the framework of joint, EU co-financed projects, and put into practice on both sides of the border. Common plant-health databases, interactive Web pages, consultation activities, professional publications, professional training activities, laboratory infrastructure improvements, common research themes proves the progress made to date and create conditions for further development of joint research activities.

  • Applicability of precision weed detection technologies
    163-168
    Views:
    157

    In an agricultural field or horticultural plantation, weeds compete with cultivated plants for water and nutrients. The transpirated water by the weeds is needed to be replaced, which saddles surplus costs on the farmer, which could reduce the profitability of crop production. The aim of the precision plant protection system is to protect cultivated plants by applying site-specific technologies and optimized herbicides combination and methods, without environmental damage. The first step of precision weed control is the scouting for weeds. Traditional and modern (passive and active remote sensing) weed surveying technologies are available to detect weeds. The examination was carried out in an intensive apple orchard with drip irrigation system, protected by hail net of the Study and Regional Research Farm of the University of Debrecen near Pallag. The spectral-based weed detection was worked out by the Tetracam ADC broadband multispectral camera and the GreenSeeker 505 vegetation indexmeter. A strong correlation observed between vegetation indices and weed coverage. Based on the collected data, weed maps are created in appropriate software environment, thus the spatial distributions of the weeds are determined. The species level discrimination and the recognition of weed structural parameters were executed based on the 3D point cloud data by Leica ScanStation C10 laser scanner.

  • New approach in soil tillage – bases of the precision crop production
    123-127
    Views:
    99

    A new approach is needed in soil tillage practice. The important achievements of this are the recognition of the risk – poor tillage practices, poor soil quality, soil state defects, and climate extremes etc. – the need for the development of risk reduction, prevention, remediation and maintenance of the favorable soil state. In this paper 13 main soil state defects are listed, to which the prevention and improving tasks are also commented. In the second part of the paper the most important soil tillage tasks are summarized in 30 sections and realization of these points may promote the implementation of precision plant production.

  • Using the principles of precision animal husbandry in fishbreeding
    283-287
    Views:
    180

    Aquaculture species such as fish, crayfish, molluscs and plats are a wide range of products, with continuously growing demand worldwide. The reasons for this is that they are cheap and easy-toraise protein sources, thus having significance in food supply especially in developing countries in tropic regions, moreover, the premium category foodstuffs in developed high income countries are also belonging to this category. World annual total production of 164 million tons (2009) are made up of two sources: 1) marine and inland fisheries landings that are stagnating for several years and 2) aquaculture which is growing dynamically with annual 6% rate between 2000–2009. The latter is accounting for nearly 45% of the total supply due to the depleting marine stocks caused by overfishing. Aquaculture is growing continuously also because the production is safe and can
    be planned well. 
    Intensive fish production systems are the representatives of precision animal production, several types exist and widespread worldwide. The modern computerized temperate water recirculation plants with several thousand m3 capacity are widespread also in Europe because they make it possible to produce even the most valuable species whole year round. A key issue in the technical/feeding outlay is to meet the demands of the cultured species the best and the operation of the system is to be safe and cost-effective. One condition for this is intensification: enable to produce more product per unit resource input or effort. The facilities need significant amount of energy, thus renewable energy sources are to be favoured for which Hungary has comparative advantages.

  • Spatially Discrete GIS Analysis of Sampling Points Based on Yield and Quality Analysis of Sugar Beet (Beta vulgaris L.)
    32-37
    Views:
    74

    Fulfilment of the increasing quality requirements of sugar beet production can be analysed with sampling of plants and soil at the cultivated area. Analyses of the spatial characteristics of samples require exact geodetic positioning. This is applied in practice using GPS in precision agriculture. The examinations were made in a sample area located in north-western Hungary with sugar beet test plant. According to the traditional sample taking procedure N=60 samples were taken in regular 20 x 20 m grid, where besides the plant micro and macro elements, the sugar industrial quality parameters (Equations 1-2) and the agro-chemical parameters of soils were analysed. Till now, to gain values of mean, weighted mean and standard variance values, geometric analogues used in geography were adapted, which correspond to the mean centre (Equation 3), the spatially weighted mean centre (Equation 4), the standard distance (Equation 5), and the standard distance circle values. Robust spatial statistical values provide abstractions, which can be visually estimated immediately, and applied to analyse several parameters in parallel or in time series (Figure 1). This interpretation technique considers the spatial position of each point to another individually (distance and direction), and the value of the plant and soil parameters. Mapping the sample area in GIS environment, the coordinates of the spatially weighted mean centre values of the measured plant and soil parameters correlated to the mean centre values showed a northwest direction. Exceptions were the total salt and calcium-carbonate contents, and the molybdenum concentration of the soil samples (Table 1). As a new visual analysis, the spatially weighted mean centre values of the parameters as eigenvectors were projected to the mean centre values as origin. To characterize the production yield, the raw and digested sugar contents of the sample area, the absolute rotation angles of the generated vectors were determined, which indicate numerically the inhomogenity of the area (Figure 2). The generated spatial analogues are applicable to characterise visually and quantitatively the spatial positions of sampling points and the measured parameters in a quick way. However, their disadvantage is that they do not provide information on the tightness and direction of the spatial correlation similarly to the original statistical parameters.