Search

Published After
Published Before

Search Results

  • Examinations of soil waterbalance in different crop-rotation systems of maize
    41-49
    Views:
    73

    We examined the change of the time of water balance of soil in 25 years old experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture) in dry (2007) and rainy (2008) cropyear in maizestock. According to our findings the values of waterdeficit of soil of maizestock were much smaller in 2008 than values of last year in not irrigated and irrigated plots of three of crop-rotation systems because of favourable supply of precipitation. We found difference between values of waterdeficit of two irrigation treatments. We measured smaller values in irrigated plots of three of crop-rotation systems before sowing.  Waterstock of soil started to decrease with the rising of average temperature and despite of increasing of precipitation quantity in this way we calculated higher values of waterdeficit. Precipitation in August and high average temperature intensified the waterdeficit. Waterdeficit achieved highest values of croptime to front of September. We examined waterbalance of soilprofile in 0-200 cm and we concluded that the waterdeficit of the 80-120 cm soilzone was most intensiv in not irrigated and irrigated treatments because of significant rootmass. 

  • Changes in toxic elements content of soil after sewage sludge treatment in energy willow plantation
    7-10
    Views:
    116

    The primary purpose of our experiment was the solution of municipal excess sludge treatment by a renewable energy resource used willow (Salix viminalis L.) plantation. Tests were carried out to state whether the applied sewage sludge has caused any accumulation of the toxic elements in the studied soil layers, and - based on the results –to see whether the plantation is suitable for the treatment of municipal sewage sludge.
    The excess sludge (sludge before dewatering) is beneficial for the willow, because it contains a 3–5% dry matter and therefore, a lot of water, too. This high water content ensures the high water amount needed for the intensive growth of the willow. On the other hand, the wastewater treatment plant can save the dewatering cost which corresponds to about 30% of the water treatment process costs. The amounts of the sprinkled sewage sludge were calculated on the basis of its total nitrogen content. Treatments were the followings: control, 170 N kg ha-1 year-1 and 250 N kg ha-1 year-1. The mean values of the toxic element concentrations in the sewage sludge did not cross the permitted limits of the land  accommodating.

    The measured toxic element values of the soil were compared to the limits of the 50/2001. (IV.3.) Government Regulation.The  sprinkled sewage sludge on the bases of the total N content did not cause accumulation of heavy metals in the soil and the treated plants were also healthy without any signs of toxicity. 

  • The impact of various grape stock cultivars on the As, Cu, Co and Zn content of the grape berry (must, seed)
    39-44
    Views:
    133

    Scientific research from the last decades showed that the inappropriate industrial and agricultural production caused an abnormal increase of the potentially toxic elements in the soil. Unfortunately the acidification of the soil is an increasing problem in Hungary. According to Várallyay et al. (2008) 13% of the Hungarian soils are highly acid. Accumulation of toxic elements differs in the genetically diverse plant species. The root of the plant constitutes a filter so that the rootstock is also kind of a filter system, which may prevent that the scion part (such as berry) accumulate high levels of various potentially toxic elements from the soil. The aim of research was to determine how different grape rootstocks influence the As, Co, Cu and Zn content of the musts and seeds. Thus, specifying which of the grape rootstocks takes up the lowest level of these 4 elements (As, Co, Cu and Zn), and accumulates in berries, so could reduce the potentially toxic element load of the grape berries. The grape rootstock collection of the University of Debrecen was set up in 2003 in 3x1 m spacing on immune sandy soil. Grafting of ‘Cserszegi fűszeres’ was started in 2010. We could evaluate yields harvested from 12 rootstock varieties of the experiment in October 2011. We obtained valuable differences in the arsenic, copper, cobalt and zinc concentrations of musts and seeds of ‘Cserszegi fűszeres’ grafted into different rootstocks. The results obtained from the 2011 harvest support the statement that the choice of rootstock might be an important factor to increase food safety. The differences in concentration of the four elements observed in case of the rootstock may have been caused on one hand by the rootstock effect, and on the other hand, the vintage effect has a very significant impact on the vines element uptake. Several years of experimental results will be needed to answer these questions.

  • The effect of compost application on physical properties of sandy soil
    67-70
    Views:
    150

    The sewage sludge compost is suitable to improve the colloid-poor sandy soils, which are common characteristics of poor water- and nutrientholding capacity. The general characteristics of sandy soils are the light mechanical composition, the low content of humus and mineral colloids, large pore size and a bad aggregate stability. They have a poor nutrient supply capacity, due to its high porosity the organic matter is degraded very quickly to mineral colloids (Stefanovits et al., 1999).

    By the compost application the soil is enriched mineral and organic colloids, thereby improving the soil structure. The effect of addition of compost to soil the water- and nutrient-holding capacity and porosity could be increased and the bulk density could be decreased (Martens and Frankenberger, 1992).

    The aim of our experiment is to carry out physical measurements to determine the effects of compost treatment. In this study the results of the first year are presented.

  • Impact of nitrogen and sulphur fertilization on the growth and micronutrient content of spring wheat (Triticum aestivum L.)
    211-219
    Views:
    166

    Micronutrients are as important as macronutrients for crops. Each micronutrient has its own function in plant growth. Zinc is important for membrane integrity and phytochrome activities. Copper is an essential micronutrient required for the growth of wheat. Manganese is required for enzyme activation, in electron transport, and in disease resistance. The pot experiment was set up in greenhouse on calcareous chernozem soil Debrecen-Látókép with a spring wheat. In certain development stages (according to BBCH growth scale of wheat), at the beginning of stem elongation (29–30), at the heading (51–59), at the flowering (61–69) stage three average plants were removed from all pots for analysis. Fresh and dry weight of the plant samples were measured. Plant leaves after drying were digested by HNO3-H2O2 methods and manganese, zinc and copper contents of plant were quantified by atomic absorption spectrophotometry. At the flowering stage, when the nutrient uptake of plants is the most intensive, the weight of wheat ranged between 0.94–1.57 g plant-1. In this development stage, the NS2 treatment produced the highest weight of wheat, and compared to this the NS3 treatment decreased that value already. The results show unfavourable effect of NS3 treatment. On the basis of microelement content of wheat and the weight of a plant, nutrient uptake by plant were calculated. At the beginning of growth the starter treatment had positive effect on Cu-uptake compared to the NS1 treatment, where the same dose of fertilizer was stirred into the soil. Wheat is very sensitive to copper deficiency, so copper dissolved by starter treatment could be favourable to the early development of wheat. At flowering stage the Zn-uptake of wheat became the highest and it was between 133.7–234.6 mg plant-1. The Mn-uptake of wheat plant was higher than the Cu- and Zn-uptake of wheat.

    This phenomenon can be explained by the fact that the untreated soil had higher Mn-content, than Cu- and Zn-content. To summarize the results, it can be stated, that the copper uptake of wheat was more affected by the different treatments in the stage of stem elongation, while Mn- and Zn-uptake of wheat were influenced primarily in the stage of heading and flowering.

  • The effect of lead and copper heavy metal salts on soil microorganisms under laboratory circumstances
    55-59
    Views:
    137

    he population dynamics of calcareous chernozem soils polluted with different concentrations of lead and copper heavy metal saline solutions was examined.

    The experiment was carried out in the soil biological laboratory of the Institute of Agricultiral Chemistry and Soil Science at DE AGTC MÉK in 2012. For the determination of the concentration of the undiluted stock solutions we multiplied the smallest toxic concentration values of the MSZ 08-1721/1-86 Hungarian standard by forty. The intermediary concentrations of the treatments were produced with adequate dilution of the stock solutions until a dilution level equal to the values of the standard. The statistical evaluation of the data was performed with ANOVA (Analysis of Variance) including the determination of the standard deviation and significant difference. Investigating the effects of the different treatments on the soil microbes we established that both heavy metal saline solutions had a negative effect on the population dynamics of bacteria and microscopic fungi living in the soils. The negative effect of copper – as a potential toxic micro nutrient – turned out to be less strong than the negative effect of the toxic lead. According to our results the correction of the treatment levels is recommended in order to further tolerance examinations and the determination of the tolerance levels.

  • Comparative analysis on the fertiliser responses of Martonvásár maize hybrids in long-term experiments
    111-117
    Views:
    68

    The results of experiments carried out in the Agricultural Research Institute of the Hungarian Academy of Sciences clearly show that in the case of hybrids grown in a monoculture greater fertiliser responses can be achieved with increasing rates of N fertiliser than in crop rotations. In the monoculture experiment the parameters investigated reached their maximum values at a rate of 240 kg/ha N fertiliser, with the exception of 1000-kernel mass and starch content. In both cases the starch content was highest in the untreated control, gradually declining as the N rates increased. Among the parameters recorded in the crop rotation, the values of the dry grain yield, the 1000-kernel mass, the protein yield and the starch yield were greatest at the 160 kg/ha N fertiliser rate, exhibiting a decrease at 240 kg/ha. Maximum values for the protein content and SPAD index were recorded at the highest N rate. It is important to note, however, that although the N treatments caused significant differences compared to the untreated control, the differences between the N treatments were not significant.
    In the given experimental year the values achieved for the untreated control in the crop rotation could only be achieved in the monoculture experiment at a fertiliser rate of 160 kg/ha N, indicating that N fertiliser rates could be reduced using a satisfactory crop sequence, which could be beneficial from the point of view of environmental pollution, crop protection and cost reduction.
    The weather in 2006 was favourable for maize production, allowing comparative analysis to be made of the genetically determined traits of the hybrids. Among the three hybrids grown in the monoculture experiment, Maraton produced the best yield, giving maximum values of the parameters tested at a fertiliser rate of 240 kg/ha N. The poorest results were recorded for Mv 277, which could be attributed to the fact that the hybrid belongs to the FAO 200 maturity group, while the other hybrids had higher FAO numbers. Maraton also gave the highest yields in the crop rotation experiment at the 160 kg/ha N level. All three hybrids were found to make excellent use of the natural nutrient content of the soil.
    It was proved that the protein content of maize hybrids can only be slightly improved by N fertilisation, as this trait is genetically coded, while the starch content depends to the greatest extent on the ecological factors experienced during the growing season.

  • Investigation of the Quality of Winter Wheat in a Sulphur Fertilisation Experiment, 2001/2002
    153-156
    Views:
    103

    We have started a small parcell and a factorial S fertilization experiment with winter wheat in the 2001/2002 cropping year to examine its effect on yield and quality. The scene of experiment was the Latokep Experimental Station of the DE ATC (calcareous chernozeem) in case of small parcell examination and the Agricultural Company of Felsőzsolca (brown forest soil) in case od factorial examination.
    The protein and gluten content of the grain was investigated with PerCon Inframatic 9001 NIR Analyser, then we have measured these parameters with PerCon 8620 infra appliance. After the milling we measured the following parameters: glutenindex, farinographic parameters (farinographic index, water absorption capacity, dough development time, stability, softening, extension) and valorigraphic index.
    Based on the results there’s no justified relation between the fertilization and the protein and gluten content. The valorigraphic index of the samples taken from Felsőzsolca factory characteristically increased as a result of the S-fertilization. In the small-parcell experiment the values of the water absorption capacity, the dough development time and the softening parameters from the valorigrphic parameters depended significantly from the mineral treatments. Signifikant quality improvement wasn’t experieced.
    There was sampling in all of critical phenophase (…). The green plant samples were examined on element content with ICP-OES. These measurements are currently in progress.

  • The Effect of Sowing Time and Plant Density on the Yield of MaizeHybrids
    95-104
    Views:
    71

    The crop technology of maize has two important elements, sowing time and plant density. In 2003 and 2004 we studied the effect of these two factors on the growth and production of maize in an experiment carried out near Hajdúböszörmény.
    The soil of the experimental plots was meadow soil.
    Weather in both years was differed greatly. 2003 was drought. Neither the distribution nor the quantity of the precipitation were suitable in the growing season for maize. This fact basically determined the results.
    In 2004, we could talk about a favorable and rainy season. The distribution and quantity of precipitation was suitable between April and September. The average temperature was also suitable for maize.
    Results of the sowing time experiment:
    In 2003, we tested seven hybrids at four sowing times. Hybrids in the early maturity group gave the highest yield at the later sowing time, while the hybrids of the long maturity group gave it at the earlier planting time. The yield of PR34B97, PR36N70, PR36M53 hybrids was the best at every planting time. The moisture loss of hybrids in the late maturity group was faster in the maturity season, but the seed moisture content was higher than the hybrids with early sowing time. The seed moisture content was very low due to the droughty year. In two hybrid cases, this value was higher than 20% only at the fourth sowing time.
    In 2004, we examined the yield and seed moisture content of nine hybrids. In the favorable crop year, the yield of every hybrid was the highest at the second and third sowing time. Yields of PR34H31 and PR38B85 hybrids were significant. The seed moisture content at harvest was higher than the previous year due to the rainy season. In the case of hybrids sown later, this value was higher by 30%. However, we noticed that this value was lower at the earlier sowing time than at the later.
    The crop year had a more dynamic effect on maize than the sowing time. First of all, the quantity and distribution of precipitation played an important role in respect to yield safety.
    Results of the plant density experiment:
    We tested the reaction of hybrids at four plant densities (45,000, 60,000, 75,000 and 90,000 stock/ha) every two years. In 2003, the tested seven hybrids reached the highest yield at the 90,000 stock/ha in the face of a droughty year. The effect of forecrop and favorable nutrients caused these results. In the rainy 2004 year, the yield grew linear with the growing plant density. The yield of the best hybrids were 14-15 t/ha at the 90,000 stock/ha.
    Such a high plant density (90,000 stock/ha) couldn’t adaptable in farm conditions in rainy season. It is practical to determine the interval of plant density besides the optimum plant density of hybrids which gave correct yield. The farmers have to use the low value of this interval due to the frequent of the droughty years.

  • The effect of sowing date and plant density on the yield of maize (Zea mays L.) under different weather conditions
    205-208
    Views:
    276

    Maize has high productivity and produces huge vegetative and generative phytomass, but this crop is very sensitive to agroecological (mainly to climatic, partly to pedological conditions) and agrotechnical circumstances. In Hungary, maize is grown on 1.1–1.2 million hectares, the national average yields vary between 4–7 t ha-1 depending on the year and the intensity of production technology. The longterm experiment was set up in 2015–2016 on chernozem soil in the Hajdúság (eastern Hungary). The maize research was set up on chernozem soil at the Látókép MÉK (Faculty of Agricultural and Food Sciences and Environmental Management) research area of the University of Debrecen. We examined the following commonly used hybrids of Hungary: SY ARIOSO (FAO 300), P9074 (FAO 310), P9486 (FAO 360), SY Octavius (FAO 400), GK Kenéz (FAO 410), DKC 4943 (FAO 410). The experiment was set up in three different plant densities. These were 60, 76, 90 thousand plant ha-1. The experiment was set up with three different sowing dates, early, average and late sowing. The yield was measured using a special plot harvester (Sampo Rosenlew 2010), measuring the weight of the harvested plot and also taking a sample from it. As a next step, we calculated the yield (t ha-1) of each plot at 14% of moisture content to compare them to each other. We evaluated the obtained data using Microsoft Excel 2015.

  • The impact of production methods and row orientation on carrot quality in the case of various cultivars
    65-69
    Views:
    128

    Carrot is a wellknown and favoured, really important vegetable. Carrot’s cultivation is important, although its growing field has been reduced in last few years. The suitable cultivar and landstructure are essential to produce good quality carrot. The ridge cultivation is widely spread on plasted soils. At this type of cultivation relationship between line orientations and carrot quality is less studied. That is the reason we tried to examine in our experiment the relationship between ridge highness and line orientation (N-S and E-W) and carrot’s morphological features at different genotipes. The experimental was settled in the Experimental Garden of the University of Debrecen on limy chernozem soil by plain, raised bed and ridge cultivation in 2013. In the experiment we examined four longgrowing cultivars (Danvers 126, Fertődi vörös, Rekord, Chantenay). The sowing was at 24th April. The harvest was at 15th October, 2013. In the multi factorial (type of cultivation, line orientation, cultivar) experimental we explained the effect of treatments on carrot root shoulder diameter and root weight.

    In our experiment we stated that line orientation had no significant effect on shoulder diameter at different cultivations. The only exception is Fertődi vörös which has reached the biggest shoulder diameter (5 cm <) at N-S direction on raised bed. By examining the carrot rootweight we stated that they were higher in raised bed and ridge cultivation than in plain cultivation with the exception of one cultivar (Chantenay). This carrot had found ideal environment for growing between each cultivation conditions. That is why we can state that if you grow carrot on plasted soil and there is no possibility to make a ridge, use short, tapered and rounded ending root type for successful growing.

  • Comparative analysis of inoculated soybean in extinguishing soil
    113-116
    Views:
    195

    In order to achieve higher yields, better technological methods offered in the current market, which aims to help the producers in the realization. To guarantee good yield because more and more people try with a variety of products, but you have to make the expected impact falls short.In this experiment, the following results were obtained: the soil suspension closely related to the inoculum of seed or seed treatment,which affects the soybean nodule formation, core saturation, and yield and protein-oil indicators. The soil suspension composition may exert positive and negative effects, which depend on how bacterial strains inoculum combined on the soybean seed surface. It is shown in our experiment very well, that between inoculum and inoculum as well as inoculum and seed treatment materials may be antagonism which setback to the soybean nodules formation and the yield, but not worsen the protein-oil indicators.

  • Application of AquaCrop in processing tomato growing and calculation of irrigation water
    183-187
    Views:
    294

    The area and volume of processing tomato production is increasing in Hungary. Irrigation is crucial for processing tomato growing. To save water and energy, it is important to know exactly how much water is needed to reach the desirable quality and quantity. AquaCrop is a complex software, developed by FAO, which is able to calculate irrigation water needs, several stress factors and to predict yields. A field experiment was conducted in Szarvas in processing tomato stands, under different irrigation treatments. These were the following: fully irrigated plot with 100% of evapotranspiration (ET) (calculated by AquaCrop), deficit irrigated plot with 50% of ET (D) and control (K) plot with basic water supply was also examined. Dry yield, crop water stress index and soil moisture were compared to modelled data. The yields in the plots with different access to water were not outstanding in the experiment. The model overestimated the yields in every case, but the actual and modelled yields showed good correlation. AquaCrop detected stomatal closure percentages only in the unirrigated plot. These values were compared to CWSI – computed from leaf surface temperature data, collected by a thermal cam in July – and showed moderately strong correlation. This result suggests that Aquacrop simulates water stress not precisely and it is only applicable in the case of water scarcity. Soil moisture data of the three plots were only compared by means. The measured and modeled data did not differ in the case of K and ET plots, but difference appeared in the D plot. The obtained results suggest that the use of AquaCrop for monitoring soil moisture and water stress has its limits when we apply the examined variables. In the case of dry yield prediction overestimation needs to be considered.

  • Early evaluation of use of fermented chicken manure products in practice of apple nutrient management
    195-198
    Views:
    106

    According to the Green Deal efforts, the importance and relevance of organic fertilization will increase in the near future. Therefore, the investigation of the effects of different organic fertilizers on soil productivity and nutrient supply is a priority area of agricultural research. Organic fertilizer experiment was conducted in an eight-year-old apple (Malus domestica Borkh.) orchard at Debrecen-Pallag. In the trial Pinova cultivar was used. In this study, two different fermented chicken manure products were added to the soil (in 20 cm depth) to test their effects on soil nutrient status, plant uptake and fruit quality. It was found that the applied treatments slightly increased the pH and nutrient levels in almost all cases, but significant effect was not observed in all treatments compared to the control. Leaf nutrient contents (N, P, K, Ca and Mg) were measured in the experiment. Leaf nutrient status was not affected by the fermented chicken manure treatments. However, used treatments had strong effects on the fruit characteristics and inner parameters, such as fruit diameter and Brix value. Moreover, it was established that the applied organic fertilizers increased the yield significantly.

  • Impact of tillage systems on maize emergence
    129-136
    Views:
    30

    In Europe, there has been a significant change in the way tillage is approached in recent years. This change is due to a growing awareness among farmers, politicians and society as a whole that soil is not a renewable resource in itself. From an agricultural point of view, the greatest impact on soil condition can be achieved through the use of the applied tillage systems.  My research takes this approach as a basis when examining the different tillage systems and their impact on the environment. In this context, conventional and a variety of no-tillage systems are examined in this paper. As a next step, it is examined how the environmental conditions created by the different tillage systems influence the emergence of maize hybrids. The analyses are carried out in a multi-factorial, long-term tillage field experiment. The same batch of the same hybrid seed was sown in several crop years, and the effects of environmental conditions on the emergence process were examined. Environmental effects and emergence-related uptake were measured in the examined plots. Measurements of environmental effects included air temperature, precipitation, soil temperature measured at seeding depth, as well as % cover of stem residue on the surface in the treated plots. The first emergence time measurements of the sown crop in the plots of each treatment were compared and relationships between these factors were investigated.

  • Determining elements of variety-specific maize production technology
    157-161
    Views:
    62

    Our aim was to work out such new maize fertilizer methods and models which can reduce the harmful effects of fertilization, can
    maintain the soil fertility and can moderate the yield fluctuation (nowadays 50-60 %).
    The soil of our experimental projects was meadow soil. The soil could be characterized by high clay content and pour phosphorus and
    medium potassium contents. In the last decade, out of ten years six years were dry and hot in our region. So the importance of crop-rotation
    is increasing and we have to strive for using the appropriate crop rotation.
    The yields of maize in monoculture crop rotation decreased by 1-3 t ha-1 in each dry year during the experiment (1983, 1990, 1992,
    1993, 1994, 1995, 1998, 2000, 2003, and 2007). The most favourable forecrop of maize was wheat, medium was the biculture crop rotation
    and the worst crop rotation was the monoculture.
    There is a strong correlation between the sowing time and the yield of maize hybrids, but this interactive effect can be modified by the
    amount and distribution of precipitation in the vegetation period. At the early sowing time, the grain moistures were 5-12 % lower compared
    to the late sowing time and 4-5 % lower compared to the optimum sowing treatment.
    There are great differences among the plant density of different maize hybrids. There are hybrids sensitive to higher plant density and
    there are hybrids with wide and narrow optimum plant densities.
    The agro-ecological optimum fertilizer dosage of hybrids with a longer season (FAO 400-500) was N 30-40 kg ha-1 higher in favourable
    years as compared to early hybrids.
    We can summarize our results by saying that we have to use hybrid-specific technologies in maize production. In the future, we have to
    increase the level of inputs and have to apply the best appropriate hybrids and with respect to the agroecologial conditions, we can better
    utilize the genetic yield potential.

  • Effect of extreme crop year on soil moisture in maize
    35-40
    Views:
    66

    We examined the change of the time of water balance of soil in 25 years old experiment, on chernozem soil, in different croprotation systems (mono-, bi- and triculture) in two extreme cropyear in 2007 and 2009 in maizestock.
    According to our findings the values of waterdeficit of soil of maizestock were about 100 mm before the sowing time that grew because of considerable deficit of precipitation and high average temperature in months of summer. Values of waterdeficit achieved at the end of August the maximum and lessed a little bit to end of crop time. Decrease of waterstock stopped because of irrigation treatments in irrigated plots but the difference between two irrigation treatments (Ö1-Ö3) vanishedat the end of summer, waterdeficit were higher with 17 mm in monoculture in irrigated plot than value of not-irrigated plot. Considerabler precipitation in Jun effected on waterbalance of soils of three of crop-rotation systems favourable, rapid waterloss starting to april began to lessenat the end of May and started to increase from early in July. Precipitation in Jun had positiv effect on yield also.

  • Ecological value of wood energy plantations in the support of some animal groups
    143-148
    Views:
    23

    Today, some environmental problems have reached such severe proportions that it is no longer enough to recognise them, but environmentally friendly solutions must be used to reduce them. The reduction in the area of natural forests of native species is causing problems in several ways.

    This research aimed to highlight how environmental, conservation and economic interests can be reconciled. In addition to natural forests, wood energy plantations are becoming increasingly important. Energy import dependency is a problem for most countries, for which wood energy plantations can partly offer an alternative. Native forests can be protected, and their area increased where possible. Meanwhile, energy plantations can be established in areas with low agricultural productivity.

    In this experiment, I studied a plantation of Pedunculate Oak (Quercus robur), a Black Locust (Robinia pseudoacacia) and a Paulownia (Paulownia Shan Tong). I selected burrowing birds and ground-dwelling arthropods as indicator groups. I did this by establishing a nesting colony and soil trapping. I wanted to demonstrate that, in addition to natural forests, wood energy plantations have a role not only in economic terms but also in maintaining certain animal groups. Soil trapping tests were carried out in all three tree plantations.

    The obtained results showed that in the Paulownia plantation, the occupancy rate of nest boxes was almost 100%, while in the Black Locust plantation it was around 30%. Among the species that occupied the nesting sites, the Common Starling (Sturnus vulgaris) and the Eurasian Tree Sparrow (Passer montanus) were more abundant, while Great Tit (Parus major) was present in the Black Locust plantation. These are opportunistic species for which nesting opportunity is the most important factor, since their feeding area (in the case of the Common Starling and the Eurasian Tree Sparrow) is not typical of the nesting area. The soil trap investigations show that there are no significant differences in the composition of the arthropod group (beetles, spiders) in the study areas.

  • Study of factors controlling the amount of 0.01 M CaCl2 extractable Norg fraction
    437-449
    Views:
    181
    The use of new methods describing the “readily available” nutrient content of the soil is spreading on a global scale. The 0.01 M CaCl2 extractant is a dilute salt solution in which the easily soluble inorganic (nitrate-N and ammonium-N) and organic N fractions, P, K and micronutrients are also measurable. The 0.01 M CaCl2 has been tested in the University of Debrecen, Institute of Agricultural Chemistry and Soil Sciences since the 90’s. The results of the researches related to organic N fraction, performed in the last decades, and the results of the present study (originating from the long-term experiment of Karcag, 2007–2009) can be concluded as follows:
    The measurement of easily soluble and oxidizable organic nitrogen (Norg), besides inorganic fractions, could improve the nutrient management.
    The amount of the Norg fraction is determined by the soil conditions, therefore it is considered to be a site-specific parameter.
    Management practices and cropyear affect the amount of Norg as well. The present research confirmed that, the effect of fertilization on the amount of Norg can be explained by the changing of the yield (related to total biomass production), while the effect of cropyear is related to the differences in mineralization circumstances and yield as well.
    The measurement of the Norg fraction is increases the accuracy of N-supply, therefore it could prevent the environmentally harmful excess N application as well.
  • The effect of long-term fertilization on phosphorus content determined in different soil extractants on meadow chernozem soil
    7-11
    Views:
    66

    The 0.01 M CaCl2 universal extractant is known all over Europe since the 90’s. During my research, I exam the phosphorus content determined in 0.01 M CaCl2 of the samples originated from the B 17 National Uniformed Long Term Fertilisation Trials in the experimental site Karcag, in the 40th year of the experiment. Relationships between the CaCl2-P and the AL-P content of the soil, the average yields, and the phosphorus balance of the
    2006/2007 year were studied. From the results of the study it was concluded as follows:
    – Correlation was close (r=0.68-0.7) between the AL-P and CaCl2-P. This is in accordance with the results of previous experiments in Hungary and other countries.
    – My studies confirmed that the calcium-chloride method indicates well the deficiency and the surplus of plant available phosphorus. In case of different degrees of negative balance, the amount of CaCl2 extractable phosphorus showed no changes, or decreased, and in case of positive balance it increased exponentially by the long-term effect of P rates.
    – The 120 and 180 kg ha-1 rates resulted in significant increases in the amount of CaCl2-P according to the control and treatments that are not fertilized with phosphorus. The 60 kg ha-1 rate didn’t result any increase as it didn’t meet the phosphorus requirement of winter wheat, and presumably the P-balance was negative in the earlier years as well.
    – It can be stated that the 0.01 M CaCl2 was able to assess the deficiency and the excess of phosphorus causing negative impacts on environment as well.

  • Nutrient and water utilisation analyses of maize on chernozem soil in a long-term field experiment
    77-82
    Views:
    168

    We have conducted our research at the Látókép Research Farm of the University of Debrecen RISF Centre for Agricultural and Applied Economic Sciences during the cropyears of 2007, 2008 and 2009, on chernozem soil. In the case of crop rotation three models were set (mono-,bi- [wheat, maize] and triculture [pea, wheat, maize]). The five nutrient levels applied during the treatments were as follows: control [untreated], N60P45K45, N120P90K90, N180P135K135, N240P180K180. The conclusion of our results was the following: the crop rotation, the nutrient supply and the amount of precipitation all influenced the quantity of maize yield. As an effect of the increasing nutrient doses yield increase was experienced compared with the control treatments. In the average of the years the highest increase in yield excess/1 kg of NPK fertilizer was measured in the case of the monoculture (13 kg ha-1). As a consequence of is soil extorting effect the monoculture responded more intensively to the nutrient supplementation than the biculture or the triculture in the studied cropyears. In addition, we have observed that the three-year average yield amount per 1 mm precipitation was significantly influenced by the nutrient reserve of the soil. In the monoculture during the control treatment this value was 25 kg mm-1, the value measured in the case of the biculture turned out to be more favourable (42 kg mm-1).

  • The effect of various composts on vegetable green mass on two soil types
    179-183
    Views:
    136

    Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
    Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing.

  • Economic questions of precision maize production on chernozem soil
    293-296
    Views:
    122

    It is one of the main topical objective to establish the conditions of sustainable farming. The sustainable development in crop production also calls for the harmony of satisfying human needs and providing the protection of environmental and natural resources; therefore, the maximum consideratio of production site endowments, the common implementation of production needs and environmental protection aims, the minimum load on the environment and economicalness. Precision farmin encompasses the farming method which is adjusted to the given production site, the changing  technology in a given plot, the integrated crop protection, cutting edge technologies, remote sensing, GIS, geostatistics, the change
    of the mechanisation of crop production, and the application of information technology novelties in crop production. Modern technology increases efficiency and reduces costs. The efficiency of crop production increases by reducing losses and the farmer has access to a better decision support information technology system. In addition, we consider it necessary to examine the two currently most important economic issues: “is it worth it?” and “how much does it cost?”. During the analysis of agricultural technologies, we used the precision crop production experiment database of KITE Zrt. and the Institute for Land Utilisation, Regional Development and Technology of the Centre for Agricultural and Applied Economic Sciences of the University of Debrecen.
    During our analytical work, we examined three technological alternatives on two soil types (chernozem and meadow). The first technology is the currently used autumn ploughing cultivation. We extended our analyses to the economic evaluation of satellite navigationassisted ploughing and strip till systems which prefer moisture saving. On chernozem soil, of the satellite-based technological alternatives, the autumn ploughing cultivation provided higher income than strip till. In years with average precipitation supply, we recommend the precision autumn ploughing technological alternative on chernozem soils in the future. On meadow soil, the strip till cultivation technology has more favourable economical results than the autumn ploughing. On soils with high plasticity – considering the high time and energy demand of cultivation and the short amoung of time available for cultivation – we recommend to use strip till technologies. 

  • The effect of different fertilizer treatments on the sulphur and protein content of wheat
    73-76
    Views:
    111

    In this study the effect of N,P and K nutrients on the S and protein content of wheat grains was investigated in a long-term fertilization experiment set up in Nagyhörcsök. The calcareous chernozem soil having the following characteristics: pH (KCl): 7.3, CaCO3: 4.27%, humus: 3.45%, Al-soluble P2O5 and K2O: 60–80 and 180–200, KCl- Mg: 150–180, KCl+EDTA-soluble Mn-, Cu- and Zn-content: 80–150, 2–3 and 1–2 mg kg-1. The experiment had a split-split-plot design with 40 treatments in 4 replications. Plant samples were collected from 2002 and 2004. 2002 was a drought year while 2004 was very wet.
    The main conclusions are as follows:
    – The sulphur and protein content were than the control higher in every NPK treatments.
    – The sulphur and protein content of the wheat grains were higher in 2004 that had a lot of rain than in 2002 that had drouht.

  • The effect of NPK fertilization and the number of plants on the yield of maize hybrids with different genetic base in half-industrial experiment
    103-108
    Views:
    178

    In our research we examined the effect of the hybrid, the nutrient supply, the number of plants and the abiotic factors (temperature, amount of precipitation) on the yield, crop quality and yield stability of maize. We devoted special attention to the natural nutrient utilization ability and fertilizer reaction of maize.

    The experiment took place in Hajdúszoboszló on chernozem soil, on a nearly 8 ha field. The size of one plot was 206 m2, this it was a halfindustrial experiment. We tested six hybrids with different genetic characteristics and growing seasons. I analysed the correlation between the nutrient supply and the yield of maize hybrids with control treatment (treatment without fertilization) and with N 80, P2O5 60, K2O 70 kg ha-1 and N 160, P2O5 120, K2O 140 kg ha-1 fertilizer treatments. Yield increasing effect of the fertilizer also depended on the number of plants per hectare at a great extent. The number of plants of the six tested hybrids was 60, 70, and 80 thousand plants/ha.

    In Hajdúszoboszló, in 2015 the amount of rainfall from January to October was 340.3 mm, which was less than the average of 30 years by 105.5 mm. This year was not only draughty but it was also extremely hot, as the average temperature was higher by 1.7 °C than the average of 30 years. In the critical months of the growing season the distribution of precipitation was unfavourable for maize: in June the amount of rainfall was less by 31mm and in July by 42 mm than the average of many years.

    Unfavourable effects of the weather of year 2015 were reflected also by our experimental data. The yield of hybrids without fertilization changed between 5.28–7.13 t ha-1 depending on the number of plants.

    It can be associated also with the unfavourable crop year that the yield of the six tested hybrids is 6.33 t ha-1 in the average of the stand density of 60, 70 and 80 thousand plants per hectare without fertilization, while it is 7.14 t ha-1 with N80+PK fertilizer treatment. That increase in the yield is only 0.81 t ha-1, but it is significant. Due to the especially draughty weather the yield increasing effect of fertilizers was moderate. In the average of the hybrids and the number of plants, increasing the N80+PK treatment to N160+PK, the yield did not increase but decreased, which is explicable by the water scarcity in the period of flowering, fertilization and grain filling.

    The agroecological optimum of fertilization was N 80, P2O5 60 and K2O 70 kg ha-1. Due to the intense water scarcity, increased fertilization caused decrease in the yield. As for the number of plants, 70 000 plants ha-1 proved to be the optimum, and the further increase of the number of plants caused decrease in the yield.