Search
Search Results
-
Evaluation of dry matter accumulation of maize (Zea mays L.) hybrids
35-41Views:405The increase of the grain yield of maize is closely correlated with its seasonal dry matter accumulation. Dry matter is accumulated into the grain yield during the grain filling period. The following maize hybrids were involved in the experiment: Armagnac FAO 490, Loupiac FAO 380 and Sushi FAO 340. In order to determine dry matter content, two samples per week were taken on the following days: 22nd, 25th, 28th, 31st August, 4th, 7th, 14th, 18th, 22nd, 25th, 29th September and 2nd, 6th, 9th, 13th October. In the course of sampling the weight of 100 grains from the middle section of 4 ears was measured in 4 replications. Dry matter content was determined after drying to constant weight in a drying cabinet at 60 °C. Harvesting was performed on 13th October 2017.
The daily precipitation sum was determined by local measurements, while the daily radiation and temperature data were provided by the Meteorological Observatory Debrecen of the National Meteorological Service in Budapest. Among the agrometeorological parameters, an analysis was made of the precipitation during the growing season, effective heat sums during the vegetative and generative phase, and the water supplies. The daily heat sums were determined using the algorithm proposed.
The amount of precipitation in the winter period before the 2017 growing season was 210 mm. The soil was saturated until its field capacity. The rather dry and warm March and April had a favourable effect, but there was no worthy amount of precipitation until May (51 mm) due to the condition of the dried seedbed. Sowing was performed on the 5th of May 2017 in a randomised small plot experiment. There was favourable precipitation and temperature during the growing season, thereby providing ideal conditions for maize development, growth and yield formation. There was near average amount of precipitation in each year. The total amount of precipitation in the summer period is 342 mm. Temperature was mostly above the average, but there was no long and extremely warm period.
The Armagnac hybrid reached its highest dry matter mass 126 days after emergence. Physiological maturity was reached sooner (on the 119th day) in the case of Loupiac, and even sooner in the case of Sushi (116th day). The thousand grain weight of Sushi (which has the shortest ripening period) was 286 g at the time of physiological maturity, while that of Loupiac was 311 g. Compared to Sushi, Armagnac showed 12 g more dry matter accumulation (306 g). In the case of all three examined hybrids, physiological maturity was preceded by an intensive phase, when the dynamics of dry matter accumulation was rather quick. On average, Sushi gained 2.8 g dry matter per day between 103 days following emergence and physiological maturity, while the same values were 3.2 g for Armagnac and 3.3 g for Loupiac. The aim of the regression line slope is to predict the behavior of the dependent variable with the knowledge of the values and characteristics of the independent variables using the regression line equation. Furthermore, to determine how the location affected the dynamic of dry matter accumulation in the Armagnac, Loupiac and Sushi hybrids. In regression analysis, the coefficient of explanation showed that the effect of day in the Armagnac was 97%, in the Loupiac 94%, in the Sushi 90 %. The determination coefficient (R2) is useful in determing how the regression equation fits. But, as we have seen, the determination coefficient alone is not sufficient to verify the model’s accuracy, in addition to the determination coefficient (R2), the normality of the data or the residuals, the variance of the variables at different levels, the independence of the data relative to time and non-oblique. Observations are evaluated for the correctness of the fitted model.
Dry matter values decreased evenly and slightly following physiological maturity. According to our research results, it was established that physiological maturity is followed by a moderate dry matter loss. Until harvesting, Armagnac lost 40 g of its thousand mass weight in 29 days, while the same value pairs were 69 g in 36 days for Loupiac and 29 g in 39 days for Sushi. Loupiac – which had the highest weight at the time of physiological maturity – lost the most of its dry weight; therefore, Armagnac and Sushi had higher values at the time of harvesting.
-
Relation of availability and barley uptake of some potentially toxic elements
7-10Views:84A small-plot microelement load field trial was set up on brown forest clay soil with eight elements (Al, As, Cd, Cr, Cu, Hg, Pb, Zn), on 3 levels each (0/30, 90, 270 kg element ha-1). The soil was treated with soluble salts of elements once at initiation (1994). In the seventh year of the experiment (2001) winter barley was the test plant. The total element content was determined in plant samples (shoot, straw, grain) after microwave digestion using cc.HNO3+cc.H2O2. The element composition of the prepared samples was determined using ICP-MS technique. In the experiment toxic effects of treatments and yield loss could not be observed. Zn and As contents in barely shoots were only moderately increased by increasing microelement loads. Effects of Cr, Cu, Hg, Pb and Al treatments could not be observed. On the other hand, Cd accumulation was significant in the shoot. Cd content was also increased both in straw and grain. Results of this experiment prove that Cd remains mobile in the soil-plant system for a long time. Its accumulation can be observed both in vegetative and reproductive parts of plants without toxic symptoms and yield loss.
-
Grain yield and quality of maize hybrids in different FAO maturity groups
126-131Views:81An improvement in the quality of maize grain by increasing the level of components responsible for its biological value is possible
by using genetic means. However, a change in the genotype, together with improving the nutrient properties of the grain, also has some
adverse consequences connected with a fall in yield and in resistance to diseases.
Field experiments were conducted during three years (2003, 2004and 2005) to evaluate environmental effects on grain yield and
quality responses of maize hybrids. Twenty one hybrids of various maturity groups (FAO 150-400) were planted to achieve an optimum
(60-70 000 plants per hectare) plant populations and grown under the medium-N (80 kg N ha-1) fertilization. Environmental conditions
significantly affected maize hybrid responses for grain yield, starch, oil and protein contents, and consequently, starch, oil and protein
yields per hectare. Hybrids of flint type, which have a short vegetation period, had high protein and oil content but the yield averages
were low due to the slower rate of starch incorporation. Hybrids of the dent type have a longer growing season and more intense
carbohydrate accumulation, but low protein and oil contents. In wet years there was a higher rate of starch accumulation, while dry
years are favorable for protein and oil accumulation. Positive correlation existed between starch content and grain yield and 1000-
weight as well as between oil content and volumetric weight among tested hybrids. Negatively correlation existed between grain oil and
starch content as well as between oil content and grain yield and 1000-weight. Thus, end-users that require high quality maize may need
to provide incentives to growers to off set the negative correlation of grain yield with oil and protein content. -
Examination of lead absorption ability on chernozem soil and the observation of the accumulation effect of Lactusa sativa L. in pot experimentation
101-104Views:157In our research a chernozem soil sample formed on loess was collected from an area under cultivation. Our aim was to determine the lead adsorption capacity using a soil column experiment. The study showed saturation of lead content of the soil. The lead accumulation capacity of Lactuca sativa L. was measured in the sections of roots and leaves applying pot experiments. It could be observed that the lettuce accumulated lead easily from the chernozem soil. The lead content was increased in the analyzed sections of the plants against an increasing lead content.
-
Molybdenum - accumulation dynamics of cereals on calcareous chernozem soil
81-85Views:139This work is about the molybdenum-accumulation of cereals analyzing soil and plant samples from a field experiment set in
Nagyhörcsök by Kádár et al. in 1991.
In this long-term field experiment different levels of soil contamination conditions are simulated. Soil and plant samples were collected
from the experiment station to study the behaviour of molybdenum.
In this report results of maize, winter wheat, winter barley and soil analysis are presented. The conclusions are as follows:
– Analysing soil samples from 1991 we have found that roughly half of the molybdenum dose applied is in the form of NH4-acetate+EDTA soluble
– Comparing element content of grain and leaf samples we have experienced that molybdenum accumulation is more considerable in the vegetative plant parts
– Winter wheat accumulated less molybdenum then maize in its vegetative parts. Comparing molybdenum content of winter wheat to winter barley we found that the concentration of the element in wheat was lower by half than in the winter barley. It seemed that molybdenum accumulated to the least degree in winter wheat. -
Violation prooxidative-antioxidant stability at maize shoots at different level of accumulation of cadmium and nickel
89-94Views:75Joint influence of cadmium and nickel was investigated on the feature of their accumulation by the vegetative organs of 10-days' old maize shoots. It was established that most intensively noted metals are taken in by the roots of shoots in the first 7 hours stressing influencing, while in leaves they appear only after a 7-hour long exposition. It was stated that the absorption process of the noted metals by a root system is carried by two-phase character. The indexes of inner-tissue contamination are calculated. Activating by the cadmium and nickel ions of lipid peroxidation as marker of the stressing influencing, and also was shown the proper increase of intensity of functioning of ascorbate peroxidase as the antioxidant enzyme protection of cell.
-
Intensity of free radical processes in the leaves of arboreal plants under act of industrial dust borne extracts
83-87Views:77The influence of industrial pollutants on the intensity of lipid peroxidation in the assimilatory organs of arboreal plant was investigated. The differential changes of the probed indexes are set depending on the species. Information is got can testify to participation of lipid peroxidation products in forming of reactions-answers of arboreal plants on influence of industrial dust borne extract with content of heavy metals. Determination of level and rates of accumulation of Zn, Ni, Pb and Cd, in the leaves of arboreal plants in the conditions of different
contamination level allowed to take species to two groups. To the first (phytoextraction potential exceeds a base-line level in 10 times) belong Populus bolleana Lauche, P. italica (Du Roi) Moench, Picea pungens Engelm and Sorbus aucuparia L. To the second (exceeds a base-line level from 5 to 10 times) belong Acer negundo L., Aesculus hippocastanum L., Betula pendula Roth and Tilia cordata Mill. The most substantial increase of peroxidation secondary product content (more than in 2.5 times) is peculiar for B. pendula, A. hippocastanum and P. pungens Engelm., that well conforms to the rates of heavy metals translocation, it has however species-specific character. -
Changes in toxic elements content of soil after sewage sludge treatment in energy willow plantation
7-10Views:149The primary purpose of our experiment was the solution of municipal excess sludge treatment by a renewable energy resource used willow (Salix viminalis L.) plantation. Tests were carried out to state whether the applied sewage sludge has caused any accumulation of the toxic elements in the studied soil layers, and - based on the results –to see whether the plantation is suitable for the treatment of municipal sewage sludge.
The excess sludge (sludge before dewatering) is beneficial for the willow, because it contains a 3–5% dry matter and therefore, a lot of water, too. This high water content ensures the high water amount needed for the intensive growth of the willow. On the other hand, the wastewater treatment plant can save the dewatering cost which corresponds to about 30% of the water treatment process costs. The amounts of the sprinkled sewage sludge were calculated on the basis of its total nitrogen content. Treatments were the followings: control, 170 N kg ha-1 year-1 and 250 N kg ha-1 year-1. The mean values of the toxic element concentrations in the sewage sludge did not cross the permitted limits of the land accommodating.The measured toxic element values of the soil were compared to the limits of the 50/2001. (IV.3.) Government Regulation.The sprinkled sewage sludge on the bases of the total N content did not cause accumulation of heavy metals in the soil and the treated plants were also healthy without any signs of toxicity.
-
Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
35-39Views:101Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. -
Effect of molybdenum treatment on the element uptake of food crops in a long-term field experiment
75-79Views:167Molybdenum, as a constituent of several important enzymes, is an essential microelement. It can be found in all kind of food naturally at low
levels. However, environmental pollution, from natural or anthropogenic sources, can lead to high levels of the metal in plants. Our study is based on long-term field experiments at Nagyhörcsök, where different levels of soil contamination conditions are simulated. Plant samples were collected from the experiment station to study the behavior of elements: uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this study, we present the effect of molybdenum treatment on the uptake of other elements. Molybdenum is proved to be in an antagonist relationship with copper and sulphur, while molybdenum-phosphorus is a synergist interaction. However, in most of the plants we studied, increasing molybdenum-treatment enhanced cadmium uptake. We found the most significant cadmium accumulation in the case of pea, spinach and red beet. -
Evaluation of nutrient conditions in open hydroponic system based on tomato production
116-119Views:84Monoculture caused a gradual decline of soil conditions, while nematodes and salt accumulation stimulated the growers to choose alternative practices, such as soilless cultures, which proved their value in Western Europe. Exact statistics are lacking, but estimates deal with approximately 300-400 hectares of vegetable on rock wool, whereas other substrates of soilless culture may multiply this number. Real perspectives are attributed to the forced production of pepper, tomato and cucumber.
Vegetable production in greenhouses may impair the ecological balance of the environment substantially as far as being uncontrolled. Soilless cultures especially should be handled thoughtfully. A fraction of the nutrients administered, more than 25-30%, is doomed to be lost in an open system, and the resulting ecological risk is accompanied with increasing costs of the production.
In Hungary, the quantity of nutrient elements in drainage water is unknown, et all. Connecting the production results with chemical analysis, we gain more information about it.
You can see a mathematical method for evaluation of nutrient and water conditions in tomato hydroponics production. -
Examination of Zn deficiency on some physiological parameters in case of maize and cucumber seedlings
5-9Views:111Zinc (Zn) is an essential micronutrient needed not only for people, but also crops. Almost half of the world’s cereal crops are deficient in
Zn, leading to poor crop yields. In fact, one-third (33%) of the world's population is at risk of Zn deficiency in rates, ranging from 4% to
73% depending on the given country. Zn deficiency in agricultural soils is also a major global problem affecting both crop yield and quality.
The Zn contents of soils in Hungary are medium or rather small. Generally, the rate of Zn deficiency is higher on sand, sandy loam or soil
types of large organic matter contents. High pH and calcium carbonate contents are the main reasons for the low availability of Zn for
plants (Karimian and Moafpouryan, 1999). It has been reported that the high-concentration application of phosphate fertilisers reduces Zn
availability (Khosgoftarmanesh et al., 2006). Areas with Zn deficiency are particularly extensive in Békés, Fejér and Tolna County in
Hungary, yet these areas feature topsoils of high organic matter contents. Usually, Zn is absorbed strongly in the upper part the soil, and it
has been observed that the uptakeable Zn contents of soil are lower than 1.4 mg kg-1.
Maize is one of the most important crops in Hungary, grown in the largest areas, and belongs to the most sensitive cultures to Zn
deficiency. Zn deficiency can causes serious damage in yield (as large as 80 %), especially in case of maize. On the other hand, Zn
deficiency can also cause serious reduction in the yields of dicots. One of the most important vegetables of canning industry is cucumber,
which is grown all over the world.
In this study, the effects of Zn deficiency have investigated on the growth of shoots and roots, relative and absolute chlorophyll contents,
fresh and dry matter accumulation, total root and shoot lengths, the leaf number and leaf area of test plants in laboratory. Experimental
plants used have been maize (Zea mays L. cv. Reseda sc.) and cucumber (Cucumis sativus L. cv. Delicatess). A monocot and dicot plant have
chosen a to investigate the effects of Zn deficiency, because they have different nutrient uptake mechanism.
It has been observed that the unfavourable effects of Zn deficiency have caused damage in some physiological parameters, and
significantly reduced the growth, chlorophyll contents of monocots and dicots alike. -
Analyses of a few physiological parameters of hybrid wheat in the case of different nitrogen supply levels
49-53Views:216The winter wheat is one of the most determinant crops because its role was always important in human’s life. To increase the average yield there are several possibilities, which are still not clear fields of agricultural plant production. Our main goal was to examine the responses of winter wheat genotypes to different amounts of nitrogen supplies. The sowing area of hybrid wheats are increasing, they may have different nutrient nitrogen utilization compared to varieties, and the question arose if it is possible to achieve same yield at lower nitrogen fertilizer application or not.
The present study analyzes the results of winter wheat (Triticum aestivum L.) from tillering growing stage. Under controlled conditions three different wheat hybrids were grown (Hywin, Hystar, Hybiza) with two different amounts of nitrogen supplies (optimal and the fourth part). The dry matter accumulation, relative chlorophyll content and nitrogen content were measured in order to draw conclusions from the different supplies of nitrogen for winter wheat genotypes and their physiological plasticity.
-
Selenium speciation analysis of selenium-enriched food sprouts
23-28Views:218In this present study, we prepared selenium-enriched pea and wheat sprouts. During our research we aimed not only to measure the total selenium content of the sprouts but to identify different selenium species.
Scientifical researches show why the analytical examination of different selenium (Se) species is necessary: consumption of all kind of Se-species is useful for a person who suffers in selenium deficit, while there is significant difference between effects of different Se-species on person, in whose body the Se-level is just satisfactory. Biological availability, capitalization, accumulation, toxicity of Se-species are different, but the main difference was manifested in the anti-cancer effect of selenium.
During our research selenium was used in form of sodium selenite and sodium selenate, the concentration of the solutions used for germination was 10 mg dm-3. Control treatment meant germination in distilled water. Total selenium content of sprout samples was measured after microwave digestion by inductively coupled plasma mass spectrometry (ICP-MS). Different extraction solvents were applied during sample preparation in order to separate different Se-species (0.1 M and 0.2 M HCl or 10 mM citric acid buffer). We wanted the following question to be answered: Which extraction solvent resulted the best extraction efficiency? Selenium speciation analysis of sprout sample extracts was performed by high performance liquid chromatography with anion exchange column, detection of selenium species was performed by ICP-MS.
Evaluating our experimental results we have been found that significant amount of selenium of inorganic forms used during germination transformed into organic selenium compounds. There was difference between the amount of Se-species in pea and wheat sprouts and selenium uptake and repartition of selenium species were depended on Se-form used during germination. In addition the chromatogram analysis made us clear as well, that the citric acid solvent proved to be the most effective extraction solvent during sample preparation int he view of organic Se species.
-
Correlation between cultivation methods and quality in some vegetable species
313-317Views:150Quality parameters of 5 table root varieties were tested on 3 sowing dates with different cultivation methods: open field on 15 April and 9 July 2010 and under plastic tents on 19 August. The highest red pigment content (betanin) was measured in the varieties Akela and Mona Lisa (~ 80 mg 100 g-1) of the second (July) crop. This crop is in general use in Hungary. In comparison, in the late sown varieties (August, under plastics) a further pigment increase (10–20 mg 100 g-1) was observed in the same varieties as related to the earlier sowing dates. Yellow pigments (vulgaxanthins) showed similar trends. Roots of the late sowing date (with harvest in December) contained the highest vulgaxanthin values (103.3–124.18 mg kg-1).
Varieties reacted differently to temperature changes during the production period and thus to sugar accumulation. In the second crop (July) higher water soluble solids content was measured on the average of varieties (10.12%) in comparison to the April sowing (7.76%). Beetroots of the spring sowing are recommended for fresh market while the second (July) crop with autumn harvest can satisfy industry requirements. Late sowing under unheated plastic tents supply us with fresh beetroot in late autumn and early winter and prolong the usability of plastic tents.
Six lettuce species/subspecies were tested in the open field and under plastic tents in 3 repetitions for nitrate nitrogen, vitamin-C, polyphenol (gallus acid equivalent – mg GAE 100 g-1) and mineral element (Ca, K, Mg, Na) contents. Our measurements showed lower nitrate nitrogen values under plastic than in the open field (89.10± 8.13 and 127.06±14.29 mg kg-1) on the average of genotypes. Lettuce grown in the field had higher vitamin-C content (1.4 mg%) which is nearly 50% more than in plants under plastic. The highest polyphenol content was found in samples from the field with a conspicuous value of 804.17±56.47 mg GAE 100 g-1 in Piros cikória. Samples grown under plastic were richer in mineral elements (Ca, K, Mg, Na) which can be explained by the higher nutrient content of the soil. In this environment superior Mg content was observed in Edivia (4616.33±
311.21 mg kg-1).Besides the well- known headed lettuce, Piros cikória (Red chicory),the red leaved Lollo Rossa and Tölgylevel (Oak leaf lettuce) should be
mentioned which well deserve further testing in order to supply us with nourishing, healthy food. -
Genetic and Practical Classifications of Hungarian Saline Soils (Contemporary Publication)
111-118Views:86The first part of the paper treates possible ways of soil alkalisation and the differences due to the reaction of the medium, neutral or alkaline, respectively. Alkalisation may occur in any soil, independently of the type, or even in soil-like formations, if conditions are favorable. Alkali soils are so-called hydrogenetic formations, developed in part through water effects. Under conditions prevailing in Hungary two kinds of salt migration processes, opposite to one another, are observable, i.e.:
1. Leaching downward, causing decrease in the base content of the upper layers,
2. Capillary rise of salts, causing increases in base content of the upper layers.
Accumulation of soluble salts usually takes place in the transition zone where these two processes get into contact with each other (Fig. 1).
* A közlemény első ízben a Bukaresti Nemzetközi Talajtani Konferencián (1958. IX. 26-án) német nyelven: „Die genetische Klassifizierung der ungarischen Szikböden” címen hangzott el.
As precipitation amounts in the Hungarian lowlands from 500 to 550 mm and causes leaching, true saline soils do not occur, except on some spots.
Between the two extreme types – completely leached, and salinized where leaching is completely absent, respectively – there exists a long range of soils alkalised or salinized to various degrees. Thus the various types of alkali soils display an interdependence with one another as shown in Fig. 2.
This interrelations may perform a base for the genetical classification of alkali soils of various properties and peculiarities. Summarising the facts stated above the paper offers a roughly, elaborated scheme for the classification of Hungarian alkali and saline soils, shown in a comprehensive table, the particulars of which are dicussed in the text. Thus the foundation is laid down for a detailed classification of alkali soils that later may become incorporated into an internationally approved system of alkali soils. The so-called practical classes of alkali soils – determined according to methods of reclamation – may be inserted into the delineated genetical system. -
Long-term experiments on chernozem soil in the University of Debrecen
357-369Views:251The impact of agrotechnical management practices (nutrient and water supply, crop rotation, crop protection, genotype) on the yields of winter wheat and maize and on the soil water and nutrient cycles was studied in long-term experiments set up in 1983 in Eastern Hungary on chernozem soil. The long-term experiments have shown that nitrogen fertilizer rates exceeding the N-optimum of winter wheat resulted in the accumulation of NO3-N in the soil. Winter wheat varieties can be classified into four groups based on their natural nutrient utilization and their fertilizer response. The fertilizer responses of wheat varieties depended on crop year (6.5–8.9 t ha-1 maximum yields in 2011–2015 years) and the genotypes (in 2012 the difference was ~3 t ha-1 among varieties). The optimum N(+PK) doses varied between 30–150 kg ha-1 in different crop years. In maize production fertilization, irrigation and crop rotation have decision role on the yields. The efficiency of fertilization modified by cropyear (in dry 891–1315 kg ha-1, in average 1927–4042 kg ha-1, in rainy cropyear 2051–4473 kg ha-1 yield surpluses of maize, respectively) and crop rotation (in monoculture 1315–4473 kg ha-1, in biculture 924–2727 kg ha-1 and triculture 891–2291 kg ha-1 yield surpluses of maize, respectively). The optimum fertilization could improve the water use efficiency in maize production.
Our long-term experiments gave important ecological and agronomic information to guide regional development of sustainable cropping systems.
-
Disease incidence of shot-hole disease of plum in two training systems
107-110Views:40Of the foliar diseases of European plum, Wilsonomyces carpopilus is the most commonly occurring fungal pathogen. The aim of this two-year study was to investigate the susceptibility of ‘Čačanska lepotica’ plum variety to shot-hole disease (Wilsonomyces carpophilus) in two different training system with 4 x 1.5 m and 6 x 3 m tree spacings. The obtained results showed that the cultivar is susceptible to this disease and by the end of the vegetational period disease incident was above 50% in both years in both tree spacings. In 2018 disease incidence was higher in both spacing than in 2019, reaching almost 90% at the 4 x 1.5 m tree spacing plot. There were few significant differences between high and low density tree spacings. The results highlighted the importance of inoculum accumulation late in the season.
-
Sour cherry as a functional food
41-47Views:190The antioxidant capacity of ’Debreceni bőtermő’, ’Újfehértói fürtös’ and ’Érdi bőtermő’ cultivars were determined by FRAP (Ferric Reducing Ability of Plasma), DPPH (1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity) and photochemiluminescence method. In sour cherry, the most antioxidant effects of natural bioactive compounds are anthocyanins. Our results show that the photochemiluminescence method out of applied assays is ratheris suitable to determine the antioxidant capacity of red soft fruits and tart cherries. The correlation is good between the determined anthocyanin concent by this technic and pH-differential spectrophotometry. However, both FRAP and DPPH assays are inaccurate.
The anthocyanin composition of ’Debreceni bőtermő’, ’Újfehértói fürtös’ and ’Érdi bőtermő’ ’Csengődi csokros’ sour cherry varieties were analised. There are big differences between the accumulation of anthocyanan compounds of cultivars. ’Csengődi csokros’ produce melatonin in large quantity. On the evidence of the results, we can say that the hungarian sour cherry cultivars are suitable for functional food development.
-
Effect of bacteria containing bio-fertilizer on Cd-tolerance of corn and sunflower seedlings in nutrient solution
15-21Views:88Bio-fertilizers promote the nutrition uptake, firstly enhance the baring and mobility of nutrients, on the other hand biofertilizers elevate nutrient uptake in direct way. Although there are a lot of questions about their application in polluted soils. The cadmium ion is easily collectable and also transportable inside plants. Thus the Cd can get into the food-chain causing public health problems. The cadmium treatment decreases the dry matter accumulation, and the intensity of photosynthesis at the experimental plants, while the treatments with bio-fertilizer increased these parameters. The cadmium accumulated in the roots, the transport to the shoots was low. We came to the conclusion, that –because of the different nutrient-uptake systemthe sunflower took up more cadmium. Using bacterium containing bio-fertilizer the toxic effect of cadmium was moderated. By our experimental results the use of Phylazonit is offered under contaminated conditions.
-
Heavy Metals in Agricultural Soils
85-89Views:82The soil constitutes the basis of the food chain. To keep soil conditions in a good trim is very important, it’s part of the sustainable development and of producing food supply harmless to health.
In some cases, soil productivity is the only important part, qualitative requirements or economical characteristics can improve it. The soil is threatened by two danger factors: the soil degradation and the soil pollution. The accumulation of different harmful and/or toxic substances in the soil is well known. Heavy metals constitute a part of it. Metals in the soil and in the soil-solution are balanced. This balance depends on the type of the metal, on the pH, on the cation-band capacity of the soil, on the redox relations and the concentration of cations in the soil.
To be able to handle the metal contamination of the soil, it is important to estimate the form, the possible extension and the concentration of metals.
Of course, the different types of soils have different physical-chemical, biological and buffer capacity, they can moderate or reinforce the harmful effects of heavy metals. To draw general conclusion of the dispersion and quantitative relations on the metals originated from different contamination sources is hard, because in some emissive sources contamination is limited in small areas but on a high level, some others usually expand on larger areas, and as a result of equal dispersion, the contamination’s level is lower.
Heavy metals – unlike alkali ions – strongly bond to organic materials, or infiltrate in a kelát form. Their outstanding characteristic is the tendency to create metal-complex forms. Kelats take part in the uptaking and transportation of heavy metals. Heavy metals exert their effects mostly as enzyme-activators.
The metals cannot degrade in an organic way, they accumulate in living organisms, and they can form toxic compounds through biochemical reactions.
Lot of the heavy metals accumulate on the boundaries of the abiotic systems (air/soil, water/sediment), when physical or chemical parameters change, and this influences their remobilization.
Human activity plays a great part in heavy metal mobilization, results in the human origin of most biochemical process of metals.
To understand the toxic influence of accumulated metals of high concentration, their transportation from soils to plants or their damage in human health, must clearly defined and investigated.
For effective protection against soil pollution, the types and levels of harmful pollution to soil must identified, regarding legal, technical and soil-science aspects, preferable in a single way. Difficulties in this area mean that toxicity depends on loading, uptake, soil characteristics and living organisms (species, age, condition etc.), furthermore, local and economic conditions considerably differ. -
Water relations composition among Egyptian cotton genotypes under water deficit
5-15Views:199Background: water shortage is one of the major factor effects on growth characters and yield of most crops. Objective: this study was conducted to get to know the reactions of some Egyptian cotton genotypes to water deficit. Methods: The genetic materials used in this study included thirteen cotton genotypes belonging to Gossypium barbadense L., from the Cotton Research Institute (CRI), which was devoted to establishing the experimental materials for this investigation. Results: the ratio of GCA/SCA was less than unity for all studied indices, indicating predominance of non-additive gene action (dominance and epistasis), which is an important in exploitation of heterosis through hybrid breeding. Results: The data showed significant reduction in water relationship characters for all parental genotypes under stress conditions. The Egyptian variety Giza 68 gave high values for most water relationship characters. Data revealed that the greater the value of tolerance index is, the larger the yield reduction is under water deficit conditions and the higher the stress sensitivity is becoming. The parental genotypes Giza 96 showed the highest reduction in yield under water deficit conditions. At the same time, the cross combination Minufy x Australy showed higher values of yield reduction followed by the combinations Giza 67 x Australy. Of the male parents, the Russian genotype 10229 recorded the best GCA values for most water relationship characters. At the same time, the female parents, the old Egyptian genotype Giza 67 recorded the best values and exhibited good general combined for most water relationship characters. The cross combinations Giza 86 x Pima S6, Giza 77 x Pima S6, Giza 94 x Dandra and Giza 96 x Australy showed significant desirable SCA effect for most characters. Conclusion: relative water content %, osmotic pressure, chlorophyll and carotenoids content indicates better availability of water in the cell, which increases the photosynthetic rate. Also, the higher level of proline accumulation in the leaves which was recorded under deficit water suggests that the production of proline is probably a common response of plant under water deficit conditions.
-
Woolly cupgrass (Eriochloa villosa /Thunb./ Kunth), a recently occured invasive weed in Trans-Tisza Region and a trial for control in maize
53-57Views:311To the effective control of invasive weeds are essential to prevent establish, if has already happened obstacle to massive accumulation, and promoting the efficient and rapid eradication, if it is possible. The Woolly cupgrass (Eriochloa villosa /Thunb./ Kunth) belongs to weeds which “hard to control” especially in corn. One of the difficulties of effective control is the prolonged emergence causing avoidance of several individuals the contact with pre-emergent herbicides. Another problem arises due to the intensive use of post-emergence herbicide products with short duration of action. To optimalize of timing of treatment is essential for successful control of later emerging weeds. The recently established Woolly cupgrass in Hungary shows resistance or reduced susceptibility to substantial portion of herbicides used in corn. The data collected from small-plot trials demonstrates that application of sulfonylurea or selective monoctyledonous herbicides can be effective against the Woolly cupgrass.
-
Effect of molybdenum treatment on uptake of plant and soil molybdenum content in a field experiment
117-122Views:181Molybdenum is not a well-known microelement, but being a constituent of several important cellular enzymes it is an essential microelement. Molybdenum occurs in all foods, but at very low levels. There does not appear to be any particular foods or types of foods, which in the absence of extrinsic factors, naturally have high levels of molybdenum. However, environmental pollution, from natural or anthropogenic sources, can lead to high level of the metal in plants.
Our study is based on the long-term field experiments of Nagyhörcsök, where different levels of soil contamination conditions are simulated. Soil and plant samples were collected from the experiment station to study the behaviour of molybdenum: total concentration, available concentration, leaching, transformation, uptake by and transport within the plants, accumulation in different organs, phytotoxicity and effects on the quantity and quality of the crop. In this work we present the results of maize and peas and the soil samples related to them.
According to our data molybdenum is leaching from the topsoil at a medium rate and it appears in the deeper layers. In the case of plant samples we found that molybdenum level in the straw is many times higher than that is in the grain, so molybdenum accumulates in the vegetative organs of the plant. The data also show differences in the molybdenum-uptake of cereals and Fabaceae (or Leguminosae). -
Overview of the evolutionary history and the role in citric acid production of alternative oxidase
83-88Views:148All organisms are exposed to countless environmental effects, which influence in a disadvantageous way their life processes. They continuously adapt to the changing conditions and respond to the stress impacts by defence mechanisms. Through different signal transduction pathways they are able to increase or decrease the expression of their genes and consequently modify their metabolic processes. My interest focuses on alternative oxidase (AOX) enzyme whose expression is often increased under biotic and abiotic stress. The so far proven and putative functions of the AOX play a role in the ability of organisms to adapt to different conditions, such as heavy metals accumulation, pathogenic infection, oxidative stress and lack of oxygen or nutrients.
AOX is a member of the di-iron carboxylate protein family. Members of the di-iron carboxylate protein family are present in all kingdoms of life. They are considered to have ancient origin. It is believed that their sulfide-resistant and oxygen-reducing ability played a role in the survival of organisms during the transition between the anaerobic and the aerobic world. It is assumed that the AOX arose in eukaryotes through a primary endosymbiotic event, and this event made possible the development of mitochondria. Afterwords, vertical inheritance, and secondary and tertiary endosimbiotic events led to its spread among eukaryotes. It is assumed that bacteria obtained AOX by horizontal gene transfer from plants.
AOX-catalyzed alternative respiration plays an important role in the operation of energy-producing and biosynthesizing system of microorganisms. In these cases, the regeneration of reduced cofactors is an essential condition, and therefore may be rate-limiting for biotechnological processes, including the citric acid production.