Search
Search Results
-
Effect of 1-MCP (1-methylcyclopropene) on the vase life of Chrysanthemum and Carnation cut flowers
29-32.Views:225The effect of 1-MCP on extending the vase life of chrysanthemum and carnation cut flowers was studied. The flowering stems of both flowers were terminated to 50 cm. in height. Then, the flowers were pre-treated with 1-MCP at 0.3, 0.5 and 0.7g/m3 for 3 hours or 6 hours. The control flowers were placed in ambient air during the treatment. After the period of treatments the flowers were aerated then put in glass vials contained tap water. The vase life determination was conducted in a vase life evaluation room at 22 ± 1°C. Fresh weight determinations of the flowers were made just before the immersion of the flowers into the glasses of water and were repeated on the day when the vase life of the control flowers was terminated. The treatment of 1-MCP at 0.5g/m3 for 6 hours was the most effective treatment of chrysanthemum and carnation cut flowers.
-
1-MCP and STS as ethylene inhibitors for prolonging the vase life of carnation and rose cut flowers
101-107.Views:241The effect of STS and 1-MCP on the postharvest quality of carnation and rose cut flowers was studied. Cut flowers of Dianthus c..aryophyllus L. cv. Asso and Rosa hybritia cv. Baroness were treated with silver thiosulfate (STS) at 0.4 mM with sucrose at 50 g 1-t and 1-methylcyclopropene ( I -MCP) at 0.5 g m-3 for 611.
Pretreatment with STS and 1-MCP significantly extended the vase life and minimized the % loss of initial weight of carnation and rose cut flowers comparing to the untreated control. The two chemicals applied inhibited the chlorophyll degradation and carbohydrate loss and hence, significantly improved the postharvest quality of carnation and rose cut flowers comparing to the control. Ethylene production by cut flowers was inhibited as a result of using these chemicals. In general, there were no differences between STS and (-MCP but the later does not have the heavy metal implications of STS treatment, and hence, using 1-MCP pretreatment for extending the vase life of carnation and rose cut flowers was recommended.
-
Ornamental plants in Hungary Part I. Protected cultivation
102-105.Views:190Between 1950-1989, the production and trade of ornamental plants in Hungary was characterised by meeting the demands of the home and that of the Eastern-Block market and by a minimal external trade with the Western countries. After the socio-economical changes in 1989/90, the trade of flowers gradually became liberalised and the Hungarian growers had to face the concurrency of steadily increasing import from the West and from all over the World. This tendency coincided with the physical and mental degradation (outdating) of most of the glasshouses, along with the decline of several former large growers of the communist type (state or cooperative), the appearance and growth of new private companies and the building (rebuilding) of new plastic houses and (mainly second-hand) glasshouses. In spite of the above-listed problems, the production as a whole did not (or only slightly) decrease and/or even an increase occured in many areas mainly in the open-ground production. In 1998, the protected flower cultivation comprised round 110 ha of glasshouses, 180-220 ha of plastic structures and 3-5 ha of frames, with the main crops as follows: cut flowers and cut foliage 220-240 ha; pot plants (with geraniums) 30-40 ha; bedding plants (without geraniums) 20-25 ha; "transit--greenhouses (for redistribution only) 3-5 ha: other (eg. propagation of woody ornamentals) 3-5 ha. The structure of open-ground production was as follows: Total 1150-1210 ha, including: Nursery products: woody ornamentals 880 ha; perennials 10-15 ha; rose bushes 30-35 ha. Other open-ground crops: flower bulbs 50-60 ha; dried flowers 130-140 ha; open-ground cut flowers 25-30 ha; flower seed 30-35 ha; (biennial) bedding plants 10-15 ha.
-
Postharvest features of chrysanthemum cut flowers as affected by different chemicals
127-131.Views:155Cut flowers of Chrysanthemum morifolium RAM cv. Suny Reagan were treated with different concentrations of 8- hydroxyquinoline sulfate (8-HQS), silver thiosulfate (STS) and 1-methylcyclopropene (1-MCP) in order to improve the post production quality. 8-HQS was used at 200 and 400 ppm with or without sucrose at 50 O. STS was used at 0.2, and 0.4 mM with or without sucrose at 50 g/1 1-MCP was used at 0.3, 0.5 and 0.7 g/m3 for 6h.
All the treatments of 8-HQS prolonged the vase life and minimized the percentage of weight loss of chrysanthemum cut flowers compared to the control. The vase life was larger when sucrose not combined with 8-HQS. The best treatment of 8-1-IQS was 400 ppm 8-HQS without sucrose. STS treatment led to prolong the vase life and minimized the percentage of weight loss comparing to the control. In addition, the effect was better when sucroseas was added to STS. The treatment of STS at 0.4 mM + 50 g/I sucrose was the best one. 1-MCP treatment increased the vase life and lowered the percentage of weight loss at any level comparing with untreated control. The best treatment in this concern was 1-MCP at 0.5 g/m3 for 6h. The chlorophyll content (chl.a and chl.b) of the leaves for the best treatment of each chemical was higher than that of the control. The treatment of 1-MCP at 0.5 g/m3 6h gave the best results in this respect.
-
Improving the postproduction quality of Rose cut flowers
109-114.Views:128In order to improve the post production quality of cut flowers of Rosa hybrida L. cv. Baroness, the effect of 8-hydroxyquinoline sulfate (8-HQS), silver thiosulfate (STS) and 1-methylcyclopropene ( I-MCP) were investigated. 8-HQS was used at 200 and 400 ppm with or without sucrose at 50 g LI. STS was used at 0.2, and 0.4 mM with or without sucrose at 50 g 1-I. l-MCP was used at 0.3, 0.5 and 0.7 g in-3 for 6h.
The postproduction quality was improved as a result of using any chemical treatment comparing with untreated control. All the treatments of 8-HQS increased the vase life and minimized the percentage of weight loss of rose cut flowers compared to the control. The vase life was lorger when 8-HQS was combined with sucrose. The best treatment of 8-HQS was 400 ppm 8-HQS + 50 g 1-1 sucrose. STS treatment led to prolong the vase life and minimized the percentage of weight loss compared to the control. In addition, the effect was better when sucrose was added to STS. The treatment of STS at 0.4 mM + 50 g 1-1 sucrose was the best one. l -MCP treatment prolonged the vase life and lowered the percentage of weight loss at any level compared with untreated control. The best treatment in this concern was l -MCP at 0.5 g m-3 for 6h. The chlorophyll content (chl.a and chid)) of the leaves for the best treatment of each chemical was higher than the control. The treatment of STS at 0.4 mM + 50 g 1-1 sucrose gave the best results in this respect.
-
Prolonging the vase life of cut Carnation 'GIOKO' by using different chemicals
65-68.Views:191Cut flowers of Dianthus caryophyllus L. cv. GIOKO were treated with different concentrations of sucrose and in combination with 1methylcyclopropene (1-MCP) to compare the effect of these treatments with floral preservative (`Spring') on the longevity of flowers. Distilled water was used for preparing all solutions. The control flowers were held in distilled water. Clorox at 2 mL- I was added to all treatments containing sucrose and it was also applied as a separate treatment. The vase life of cut carnations was significantly prolonged due to the use of chemical treatments, as compared to the untreated control. The longest vase life (18.33 days) was obtained by using 1-MCP 0.5 g m-3 for 6 h treatment. All concentrations of sucrose had a positive effect on flower diameter. The best treatment in this respect was 1 -MCP with 30 gL-I sucrose. 1-MCP treatment significantly increased the chlorophyll content, as compared to the control or the "Spring" treatment. The highest values in this respect were obtained by 1 -MCP treatment alone or with the lowest level of sucrose. The effect of these treatments on the pH of solutions is discussed.
-
Growing greenhouse cut flower in hydro-culture
37-39.Views:160The importance of hydro-cultural growing is significantly increasing.We have been dealing with the hydro-cultural growing of cut flowers at the Department of Ornamental Plant Growing and Maintenance of Gardens at the College Faculty of Horticulture at Kecskemét College since 1988.We started our experiments by growing carnation in growing establishment without soil then we introduced other species of cut flowers and potted ornamental plants into our research work.
-
Extending the vase life of Solidago canadensis cut flowers by using different chemical treatments
83-86.Views:202In order to increase the vase life as well as quality of leaves of goldenrod (Solidago canadesis), the effect of 8-hydroxyquinoline sulphate (8-HQS), silver thiosulphate (STS) and l-methylcyclopropene (l-MCP) were investigated. 8-HQS was used as a continuous treatment at 400 ppm with or without sucrose at 50 g/l. The treatment of STS was used by putting the flower bases at 0.4 mM for 6h with or without sucrose at 50 g/l. l -MCP was used at 0.5 g/m3 for 6h dry or in water. Except the treatment of l -MCP in water, the chemical treatments, which were used, led to the increase vase of life of leaves as well as to the inflorescence of cut solidago spikes compared to the control. The best treatment in this concern was 8-HQS at 400 ppm without sucrose, which resulted in longest vase life of leaves as well as inflorescences and lowest percent loss of fresh weight of initial.
-
Evaluating vase life and tissue structure of some compositae (Asteraceae) species
87-89.Views:180The vase life of cut flowers and effects of various chemicals was examined with the help of a pulse treatment. According to the results using of chemicals (preservatives, disinfectants as well as blocking of synthesis of ethylene) is ineffective if it is used after seeding This shows the great importance of harvesting time.
Using 8-HQS or l-MCP + 8-HQS proved to be the best for vase life in most of the samples. Using these materials did not prevent the appearance of air bubbles in the stems and absorption could be observed continuously.
To examine the tissue structure reaction of chemicals stems were stained with toluidin-blue, and high of absorption was measured. It was found that in cases, when absorption was bad, small air bubbles blocked the xylem vessels.
All the species examined (Aster linosyris, Achillea collina, Aster novi-belgii, Inula britannica, Solidago canadensis, Inula ensifolia, Senecio jacobea) show similar reactions to chemicals because they are the members of the same family.
-
The hydroculture of calla
90-92.Views:108Hydroculture was established in the early 40's. This technology became wide-spread in 60's. Because of economic considerations it played little role in Hungarian ornamental plant growing. The forthcoming joining of the EEC as well as the strict enviroment protection regulations, this technology is likely to spread in our country and like in most of the West European countries, cut flowers will be grown in hydroculture. Closed systems match the most strict environmental regulations. Calla can be well adopted to this technology because of its origin and water demand.
We have studied three growing methods: PUR-agrofoam, container and soil-heated, of which soil-heated proved to be the best significantly.
-
Freeze Susceptibility of Fruit Buds in 67 Apple cultivars in Hungary
29-35.Views:139Frost damage is one of the most important risks of apple production. Outstanding importance has been attributed to the frost resistance of flower-buds as decisive sites of fruit production. Browning of plants parts and tissues exposed to natural weather adversities are considered as effects of frost. In Hungary, frost damage on flower buds of both the market and new cultivars has not been assessed earlier. Observations referring to the consequences of frost damages of over four critical years, marked by their peculiar winter and spring frost hazards. Parallel observations have been made in four sites of the growing area in the Great-Plain region. 67 apple cultivars have been assessed. Each cultivar was represented by 3 trees, which were sampled at about 1-1.5 m height over ground, where the buds or inflorescences were picked for the purpose to assess the injury. The buds and flowers are cut longitudinally and rated visually according to the extent of browning of the organs and tissues. Susceptibility of different organs of the flower (pistils and anthers) were rated separately. According to our results, most resistant to spring frosts are the following cultivars: 'Gloster', 'Granny Smith' and appreciable tolerance is attributed in 'Gala' and 'Jonathan' with derivatives. Preliminary results that among the scab resistant cultivars, `Baujade', 'Rewena', 'Liberty', `Resi' and 'Renora' are rather frost resistant. Information, lacking hitherto, is obtained upon 'Reka' and 'Reglindis' as for their increased susceptibility.