Search

Published After
Published Before

Search Results

  • Study on the viruses of Petunia in Hungary
    55-59.
    Views:
    123

    Virus susceptibility of 11 varieties of vegetatively propagated petunia against 2 virus strains (TMV-C/U1 and PVYNTN) were examined. Neither resistant nor tolerant varieties of petunia were found. The virus infection of the Petunia genus was examined in Hungary. The most common pathogens were the Tobacco mosaic tobamovirus (TMV) and the Tomato mosaic tobamovirus (ToMV), but the samples also contained Alfalfa mosaic alfamovirus (AMV), Cucumber mosaic ClIC11171014171S (CMV) and Potato Y potyvirus (PVY). Potato X potexvirus (PVX) was isolated in the varieties of trailing petunia for the first time.

  • Studies on the Tobamovirus resistance of the pepper (Capsicum annuum L.) cultivar Greygo
    71-75.
    Views:
    144

    Resistance of the Hungarian pepper (Capsicum annuum L.) cultivar "Gre.ygo" to Tohamoviruses has been investigated. All plants of the population of Greygo proved to be resistant to tobacco mosaic and tomato mosaic viruses (TMV, ToMV), both represent the pepper pathotypes Po of Tohamoviruses. Individuals of Greygo, however, were found to be susceptible to pathotypes P12 and P123 of pepper mild mottle virus (PMMV). When inoculated with the XM isolate of dulcamara yellow fleck virus (DYFV, pathotype P1) the population of Greygo segregated in resistant and susceptible plants. These results as well as inoculations of the progenies of three TMV resistant plants clearly showed, that besides the resistance allele Li the cultivar Greygo possesses also an another allele. This allele, provisionally marked by L2g behaves like to the allele L2 characteristic to Capsicum frutescens cv. . Tabasco. Determination of the identity of the allele L2g to the allele L2 needs further genetic and pathological informations. Relations between the Tohamoviruses pathogenic to pepper and the alleles of the resistance gene L are outlined for the discussion.

     

  • Virus susceptibility and resistance of Hungarian pepper varieties
    68-73.
    Views:
    157

    The aim of our study was to examine susceptibility or resistance of 18 pepper varieties to four viruses [tobacco mosaic

    tobamovirus (TMV), sowbane mosaic sobemovirus (SoMV), NTN strain of potato Y potyvirus  (PVYNTN) and cucumber mosaic cucumovirus (CMV). Out of the 18 varieties, 13 were resistant to CMV infection. Thirteen varieties were susceptible to TMV, while five ones (Dabora Fl, Brill Fl, Feherozon Synthetic, Ciklon Fl, Cecil Fl) showed only local hypersensitive reaction. All of the tested pepper varieties showed resistance to SoMV. Eight varieties (Tuba, Fehérözön Synthetic, Boni, Alba Regia, Korona, Édesalma, Cecil Fl, Star) were found to be resistant to PVYNTN. Out of the examined varieties five (Boni, Alba Regia, Korona, Édesalma, Star) were resistant to three viruses (SoMV, CMV and PVYNTN). Only one (Cecil F1) displayed complex, extreme resistance to SoMV, PVYNTN, CMV and hypersensitive reaction to TMV, therefore this hybrid is very important in pepper breeding and growing for virus resistance.

  • Reaction of different Capsicum genotypes to four viruses
    61-64.
    Views:
    151

    The objective of this study was to examine the reaction of 44 Capsicum genotypes to common strain of Tobacco mosaic virus (TMV-C/U1), Obuda pepper virus (ObPV), NTN strain of Potato virus Y (PVYNTN) and legume strain of Cucumber mosaic virus (CMV­U/246). Reaction (extreme resistance, hypersensitive reaction, latent susceptibility, susceptibility) of the tested Capsicum species/hybrids and breeding lines seemed to be greatly depending on hosts and viruses. Out of the breeding materials 4/99 F2 and IX-8 in to CMV-U/246, while 32.Bogyisz. type, VI-57 ii. 57/83 and V-12=19/98 to TMV-C/Ui showed extreme resistance. Two lines (V-25 F1=32/98 F1 and V-27 in F4=35/98 F4) showed hypersensitive reaction to ObPV. Latent susceptibility to PVYNTN was observed in case of all eleven tested Capsicum genotypes and in case of several lines to TMV-C/U1, ObPV and CMV-U/246. Other breeding materials proved susceptible to the mentioned viruses. Pepper genotypes showing extreme resistance and hypersensitivity could be used for resistance breeding to viruses.

  • Investigation on the transmission of some Tobamoviruses by pollen and seed in pepper (Capsicum annuum L.)
    127-131.
    Views:
    228

    Five pepper cultivars were mechanically inoculated with isolates of three Tobamovirus species, viz. the "Gelb" strain of tobacco mosaic virus (TMV-G), the XM-isolate of dulcamara yellow fleck virus (DYFV-XM) and the Nov/H isolate of pepper mild mottle virus (PMMV-Nov/H), respectively. Symptoms caused by the viruses were characterised. The viruses were sucessfully re-isolated from different organs (roots, leaves, fruit parts) of susceptible peppers to test plants. It was estabilished, that the pollen of diseased peppers carried infective virions at least on their surface. Washes of seeds were highly infective, but no infectivity was found after treatment of the seeds with 2% NaOH or 10% Na3PO4. No infectivity of inocula prepared from seed-coats of alkaline treated seeds was established. Infection of young seedlings grown from untreated seeds was demonstrated, while the seedlings came from alkaline treated seeds remained free of infective virus. The possible role of pollen and seed in the epidemiology of Tobamoviruses pathogenic to pepper as well as the importance of seed treatment is discussed.

  • General defense system in the plant kingdom III.
    45-54.
    Views:
    154

    Our observations regarding the symptoms not fitting into, significantly differing from the hypersensitive defense system, which we noticed during the judgment of several plant species, symptoms provoked on several million plants have constituted a unified entity. They have provided evidence for the existence of a different plant defense system. We called this so far unknown basic response of plants to biotic effects as general defense system. This system defends them from the attack of numerous microbe species in the environment.

    The evolutionary intermediate phase between the general and the specific, the two defense systems is the susceptible host—pathogen relation. The vertical resistance system of plants escaping from the susceptible host—pathogen relation, based on specific hypersensitive reaction also suggested the existence of a more original, general defense system and the susceptible host—pathogen relation developed as a result of the collapse of that system.

    The evolutionary relation of the two defense systems is proved by the only recessive inheritance of the older general defense system and in the majority of cases dominant hereditary course of the specific defense system. In our experiences, the modifying genes of the recessive general defense system, in most cases, are behind the specific defense systems, which are known to have monogenic dominant hereditary course and react with hypersensitive tissue destruction. This seemingly striking genetic fact is explained by the following: the general defense system less dependent on environmental effects regulates much faster pathophysiological reaction than the specific resistance genes strongly dependant on environmental effects coding dominant hypersensitive reaction.

    The general and specific defense reactions, the processes excluding the microbes attacking plants with compacting of cell growth and tissue destruction, which mean two opposite strategies, building on and regulating each other constitute the entity of resistance to plant disease.