Search

Published After
Published Before

Search Results

  • The effects of fertilization on 2 year old established swards. Yield and mineral content 6.
    94-106
    Views:
    45

    The effects of different N, P and K supply levels and their combinations were examined on the hay yield and mineral element content of an established 2 year old all-grass sward in the 29th year of a long-term fertilization field experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 3-5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available N, K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2002, the area had 401 mm precipitation and gave 2 cuts of grass. The 1st year results of the trial were published earlier (Kádár, 2005a, b). The main conclusions can be summarised as follows:
    1. As a function of N×P fertilization the two cuts of the hay yield made up 1.4-8.0 t/ha while the green herbage 5.0-24.0 t/ha. The N-fertilization was of vital importance, which increased the hay mass 5 times. The P-response was moderate in the 1st, cut while there were no K-responses at all on this soil with 135 mg/kg ammoniumlactate (AL) soluble K2O values in plough layer.
    2. On those plots well supplied with PK the 100 kg/ha/yr N-treatment gave a total of 48 kg surplus hay/kg N applied. The 200 kg/ha/yr N-treatment yielded 11 kg, while the 300 kg/ha/yr N-treatment yielded 4 kg surplus hay/kg N applied. The NO3-N content of the 1st cut hay increased over permitted 0.25% level when using the maximum N-rate and made up this NO3-N form 26% of the total-N pool. The optimum PK-supplies in this site seems to be about 130-150 mg/kg AL-P2O5 and AL-K2O in plow layer with 200 kg/ha/yr N applied.
    3. N-fertilization enhanced the content of N, K, Mg, Na, Mn, Cu and NO3-N, while the concentration of S, P, Al, Fe, B and Mo dropped in the primary hay. The increasing P-supply stimulated the uptake of P, Ca, Mn, Sr and Ba, while hinderned the uptake of S and Mo. The K-fertilization rose the content of K and Ba and diminished the concentration of Mo and the antagonistic metal cations like Ca, Mg and Na.
    4. The NPK fertilization-induced Mo-deficiency can first of all jeopardized the fodder quality in this site. On the unfertilized plots the hay showed around 1.0 mg Mo /kg D.M., while on the N3P3K3 plots 0.1-0.2 mg/kg D.M. The P/Mo ratio lifted from 2-4 thousand up to 20 thousand. In the 2nd cut this phenomena partly disappeared, while developed the P-Zn antagonism. On P-control plots measured 15 mg/kg Zn
    94
    GYEPGAZDÁLKODÁSI KÖZLEMÉNYEK, 2006/4.
    dropped to 10 mg/kg while the P/Zn ratio rose from 167 up to 364.
    5. The 2nd cut hay had a little yield, yet was rich in minerals having 30-50% higher average element content compared with the primary hay. However the N, Al, Fe and Mo showed 2-times higher concentrations in the 2nd cut hay. There were found extra large, 25-fold differences in hay Na content as a function of N×K supply levels under synergetic effect of N and antagonistic effect of K treatment.
    6. Summarizing the above we can state that the long-term fertilization may drastically change the content and ratios of elements built in hay through synergetic or antagonistic effects. In the air-dried 1st cut hay for example, the minima-maxima concentrations of measured elements varied as follows: N 0.7-3.0%, K 1.3-3.0%, Ca 0.3-0.5%, Mg 0.13-0.21%, S 0.15-0.32%, P 0.10-0.32%; Na 50-1400, Mn 60-120, Al 50-120, Fe 70-140, Sr 8-170, Zn 6-40, Ba and B 3-6, Cu 2.5-5.5, Ni 0.4-1.4, Mo 0.1-1.0 mg/kg.

  • The impact of production factors on the yield formation of grasses of various exploitation
    13-18
    Views:
    118

    The lawn – following the forest – is the best manner of land use. 10.75 percent of Hungarian territory is grassland. 90-95 percent of the grass’s root system can be found in the upper 10 cm layer of the soil therefore and because of the large evaporating surface the grasses have a great water demand and weather sensitivity. Beside the nutritional ability and some extreme properties of soil (for ex. great salinity) there is an influence on formation of the grass-type and the yield. In our experiments the sites were utilised 2, 3 and 4 times yearly. At two sites for four years (2006-2009) and at one site for two years (2009-2010) the quantity and the distribution of the yield as well as other parameters were examined, which are not reported in this paper. This experiment is a part of a climate research project run at 27 sites in Austria. The laboratory analyses were carried out uniformly in the LFZ Raumberg- Gumpenstein Research Institute. The most important results of this study are the following: The productivity of the grass type formed on the Little Cumania lowland is very limited. In case of drought there was the highest yield decrease and at the same time in case of good precipitation there was the smallest increase of yield. The effect of grass utilization by late first cut at the poorestsoil site was very unfavourable. At the grass sites of better quality, the utilization manner of 3 or 4 growth, resulted in a better adaptation to the climatic extremities. 

  • Effect of NPK fertilization and manure load on the grazed natural permanent grassland
    16-25
    Views:
    56
    1. The 2nd year effects of fertilization at Cserkeszőlő site were not proven statistically in hay yield. However, the NP-fertilization and the sheep manure gave 1-1.5 t/ha hay surpluses at Bakonszeg farm. The mineral composition of the hay did not change significantly as a function of treatment neither at Cserkeszőlő, nor at Bakonszeg site.
    2. Elevated, in some cases extreme high K, N, Ca, P, Mg, S and partly Sr, Cd, B concentrations were found in the above ground plant tissue on the resting hump; as well as Fe, Na, Al, Cr and Co concentrations on the driveway. Plant samples were not cleaned or washed so surface pollution could also contribute to the abnormal composition.
    3. According to soil analyses the organic matter content increased in the 0-40 cm layer at watering-place and screen wall. The NO3-N content can reach 250-300 kg/ha level in the 0-1 m soil layer under the watering-place. The potassium rose more fold in the 0-40 cm layer at passageway, watering-place and near to screen wall. The NH4-acetate+EDTA-soluble P content of the whole 0-1 m layer showed 2-fold excess at driveway, 4-fold at resting hump, watering-place and screen wall, as well as 23-fold at passageway.
    4. The resting hump and passageway showed Zn pollution/accumulation. This phenomenon needs to be cleared by more examination. The soluble Fe increased in the topsoil near to screen wall, while soluble S in the topsoil of the watering place and around screen wall. The 0-20 cm soil layer had 72 mg/kg NH4-N and 25 mg/kg NO3-N, so N load can reach 300 kg/ha. The rear, suffering grass stand on this place can not use this N-pool, so here point pollution can be significant.

     

  • The effects of fertilization on a 6 years old established grassland
    19-30
    Views:
    42

    The effect of different N, P and K supply levels and their combinations were examined in the 33rd year of a long-term fertilization experiment on the yield and mineral element content of a 6 years old established all-grass sward in 2006, with seed mixture of eight grass species. The trial was established on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, super phosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. The 1st cut was made on 08th June, the 2nd one on 11th September. During the vegetation period of 8.5 months in 2006, the site had a total of 397 mm precipitation. The lay-out, method and main results of the trial were published earlier (Kádár, 2004, 2008; Kádár és Győri, 2004, 2005). Main conclusions of this study are as follows:

    1. The 1st cut hay yield gave the ¾ of the total yield. Highest yields were reached with the 200 kg/ha/year N-fertilization on soil well supplied with P (Ammonium-lactate soluble P2O5: 214 mg/kg). The yield of NP control plots increased from 1.5 t/ha to about 7.5 t/ha as a function of the N×P positive interaction. The rising P supply alone was not able to enhance the yield, however the N fertilization gave 3.5 t/ha hay surplus even in the P-control treatments. N and P fertilization together resulted in 6.0-6.5 t/ha yield surpluses. The effect of K fertilization also reached 1 t/ha on the NP levels where the ammonium-lactate soluble K2O content fell below 150 mg/kg.
    2. The 2nd cut hay gave 0.5 t/ha on the NP-control plots unfertilized for 33 years, and 2.5 t/ha on the 300 kg/ha/year N treatment with well P-supply. The two cuts together resulted in yield levels between 2-10 t/ha according to the extreme NPK supply. In this year, with relatively good amount of precipitation, the hay yield surpluses for 1 kg N were 47-33-23 kg for the 100-200-300 kg/ha treatments.
    3. The C/N ratio of the 1st cut was narrowed (from 52 to 24) with N-supply and the concentration of N as well as most of the cations increased with the rising N fertilization. In the low yield of the 2nd cut the elements, metals were accumulated. The P, S and Sr were enriched in hay as a result of rising P supply, as superphosphate contains these elements. Antagonistic effect of P predominated in the uptake of other elements, metals (Na, Zn, Cu, Mo, Cr, Co). K content of the hay was lifting while other elements were dropping with the increasing K fertilization partly as a result of dilution effect (N, P, S) and mainly because of cation antagonism (Ca, Mg, Na, Sr). K-B antagonism also appeared.
    4. The N×K interactions resulted in 2-fold Sr and 18-22 fold Na content changes while N×P caused 18-22 fold changes in Mo contents, especially at the 2nd cut. As it can be seen, fertilization can have drastical effects on soil and crops. The induced element deficiencies or oversupplies can lead to diseases, disturbances in the metabolism of animals, so the soil and fodder analyses are necessary.
    5. Considering the leaf diagnostical data, the satisfactory level will be at 200 kg/ha/year N supply and 150 mg/kg ammonium-lactate soluble P2O5 and K2O level or above. The S, Ca, Mg, Fe, Mn supply were satisfactory even at the control plots, while the Zn, Cu and B levels showed deficiency. The P/Zn and K/B ratios became adversely wider in some treatments, as well as the narrowing of the Cu/Mo ratio denotes Cu deficiency and Mo oversupply.
    6. The amount of elements uptaken by hay as a sum of the two cuts and as a function of the supply/yield varied between the following values in kg/ha: 17-163 N; 36-122 K; 9-48 Ca; 6-17 P; 4-15 S; 3-14 Mg; 0,3-8,0 Na; 0,2-1,4 Fe; 0,2-0,9 Al and Mn. The other elements showed the following uptake: Zn 33-194, Sr 28-141, Ba 5-46, Cu 5-39, B 5-26, Mo 3-6 g/ha.
    7. The botanical composition was drastically modified by the aging of the grass and the nutrient supply. Only three species remained out of the eight sown species and one immigrated. Coverage of the tall fescue was between 21-70% according to the N×P supply and 44% as average; coverage of cocksfoot varied between 4-24% depending on the treatment and 18% as an average; coverage of crested wheatgrass was between 0-28% and 9% as an average; the immigrant smooth brome covered 0-24% and 9% as an average; Weed cover was 3-4% as an average at the 1st cut. Weeds thrived mainly on those areas where the grass thinned away (extreme NP-deficiency or oversupply). The total plant coverage on NP-deficient soil was about 50%, while on treatments well supplied with NP it amounted 95-97%.
  • The effect of fertilization on the mineral contant of artificial grasslands 3.
    57-66
    Views:
    67

    The effects of different N, P and K supply levels and their combinations were examined on the mineral element content of an established all-grass sward with seed mixture of eight grass species in the 28th year of a long term fertilization field experiment set up on a calcareous chernozem loamy soil. The lay-out and method of the trial as well as the fertilizer responses on the hay yield were published elsewhere (Kádár 2004). The effect of fertilization on the nutritional values and nutrient yield also described earlier (Kádár and Győri, 2005). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally, moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m, the area was prone to drought. In 2001, however the area had a satisfactory amount of 621mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
         1. As a function of N-fertilization the element content of the 1st cut hay usually increased, except for Al and Mo, which showed dilution effects. The concentration of K, Ca, Mg, Mn, P, Sr, B, Ni enhanced with 25-50%, S and Co with 60-70%, N and Cu 2-times, NO3-N and Na about 5-times compared to the N-control. The P-fertilization stimulated uptake of Mn and Mg for 10-20%; S, NO3-N and Co for 40-50%, Na and for Sr 60-70%, P for 90%, however, inhibited the uptake of Zn and Co for 20-40%, Al and Fe for 50-60%, Mo for 70% compared to the P-control.
         2. The P/Zn ratio showed on P-control soil optimal values of 118, while on highly P-supplied soil 278 P/Zn ratio, so indicating Zn-deficiency. As a function of PxK negative interactions, concentration of Fe dropped from 307 to 105 Al from 206 to 60, Mo from 0.44 to 0.05, Cr from 0.33 to 0.12 mg/kg in air-dry hay. The Cu/Mo ration on N-control soil showed the optimal value of approx. 10, while on heavily fertilized with N soil that of 40-80, indicating extreme Mo-deficiency.
         3. The 2nd cut hay contained about 20% more N, K, Ca, Mg, Na, 40% more Cu, 70-80% more S and Mn, 90% more Fe and P, 140% more Al and nearly 5-times more Mo. The content of B did not changed, while NO3-N dropped about 40% . The Cu/Mo ratio showed value of 2.6 on N-control soil, while on heavily fertilized with N soil ratio of 7.8. The P/Zn ratio indicated on P-control soil optimal value of 150, while on overfertilized with P soil value of 269. So, the P-induced Zn-deficiency could also be proven in the 2nd cut hay, while the Cu-induced Mo-deficiency disappered.
         4. The N-fertilization stimulated in the 2nd cut hay also the accumulation of elements N, K, Mg, P, Mn, Cu and Ni with 20-50% compared to the N-control. The NO3-N increased 4-times, while Na content 10-times. However the elements Fe, Al, B, Mo and Cr showed a dilution effect with 20-60%. The P-fertilization increased the concentration of Mn, Sr, Cd, Co, S and P, while decreased the content of Na, NO3-N, Cu and Zn. As a general rule, the K-fertilization hindered the accumulation of metal cations. The P-induced Cd accumulation was fully counterbalanced by increasing K-supply of soil.
         5. Summarizing above we can state that the long-term fertilization can drastically (in some cases with an order of magnitude) change the concentrations and ratios of elements built in hay through synergetic or antagonistic effects. In the 1st cut hay, for example, the minima-maxima contents of measured elements varied in air-dry hay as follows: N 0.90-3.02, Ca 0.4-0.7, S 0.14-0.32, P 0.12-0.30, Mg 0.10-0.24%; Na 70-700, Fe 100-288, Al 45-250, Mn 71-130, Sr 10-22, Zn 7-14, Ba 6-11, B 3.6-8.1, Ni 0.3-1.6, Cr 0.1-0.4, Mo 0.04-0.44, Co 0.04-0.12 mg/kg.

  • Tájhasználat és gyephasznosítás Natura 2000 területen: – esettanulmány a Balatonkeresztúri rétek példáján –
    31-38
    Views:
    71

    The aim of our study was to describe the actual land use of the Balatonkeresztúri rétek, a Natura 2000 site. We drew a map according to the land use categories. During field studies (in 2013) we recorded the actual land use activities and compared it with the officially registered land use categories. Our results showed that only 42.6% of the meadows and pastures are managed. All of the grasslands should be managed extensively to maintain the diversity of species. The area of grasslands could be extended with the increase of the number of livestock. We expect that the land use will change in a positive way as a result of agricultural supports. The ratio of managed (mowed and/or grazed) grasslands can increase in the future and as a consequence the diversity of grasslands can increase as well. 

  • The effect of fertilization on the feeding value and nutrient yield of artificial grasslands 2.
    46-56
    Views:
    62

    The effect of different N, P and K supply levels and their combinations on the nutritional values and nutrient yield of an established all-grass sward were examined in 28th year of a long-term fertilization field experiment set up on a calcareous chernozem loamy soil. The fertilizer responses on the development, hay yield and N-uptake were published elsewhere (Kádár, 1994). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2001, however, the area had a satisfactory amount of 621 mm precipitation with fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
         1. While the grass herbage yield was determined by the NxP supply levels, the nutritional values were influenced by the NxK interactions. As a function of NxK treatments, the N-free extract decreased from 532 g/kg (control) to 390 g/kg (N3K3), Crude-protein increased on the same plots from 64 g/kg to 183 g/kg, so the ratio of N-free extract/Crude-protein tightened from 8.3 to 2.1. Compared to the unfertilized control, the Crude-ash enhanced with 26%, while the N-dependent Metabolic Protein (MFN) with 286% on the N3K3 levels.
         2. The maximum nutrient yields were measured at the first cut on the 100 kg/ha/yr N-treatment with 150 mg/kg ammoniumlactate soluble P-supply soils for Crude-fibre, Neutral and Acid Detergent Fibres (NDF, ADF) N-free extract, Crude-ash and Nettoenergy (NE) parameters. The Crude-fat and the Energy Dependent Protein (MFE) yields gave maximum surpluses using 200 kg/ha/yr N-rate with high level of 333 mg/kg AL-P2O5 supply in plow-layer. Highest crude-protein and the N-dependent Metabolic Protein (MFN) yields were connected, however, to the highest N3P3 levels, where the yield increased 5-times compared to the control.
         3. At the 2nd cut, both the nutritional values and the nutrient yields changed only as a function of N-supply. Maximum nutrient yields were obtain generally at the 300 kg/ha/yr treatment. Assessing the 1st and 2nd cuts together, the 200 kg/ha/yr treatment seemed to be the best fertilization practice. Among the different NPK treatments developed extreme differences. The unfertilized for 28 years plots (N0P0K0 ) gave small nutrient yields. The moderate N-fertilization alone (N1P0K0) enhanced the yields 2-3 times. The moderate balanced fertilization (N1P1K1) gave further dramatic surpluses. The N-dependent Crude-protein and the protein fractions (MFE, MFN) as well as the Crude-fat yielded maxima values at the highest (N3P3K3) treatment.
         4. Summarizing above, we can state that the satisfactory or abundant fertilization on such soil poor in NPK and in a favourable year can increase the Crude-fibre, the fiber fractions (NDF, ADF), N-free extract, Crude-ash, Crude-fat and Nettoenergy (NE) yields 3-5 times, while the N-dependent Crude-protein and protein-fractions (MFE, MFN) even 7-8-times.

  • Relationship between the diversity and mowing in cleared grassland areas in the Börzsöny mountains
    3-13
    Views:
    67

    Nowadays, mowing has an increasing role in the management of semi-natural and nature conservation areas. Semi-dry grasslands have been formed on cleared areas of forest in the Pannon mountains, which would be reclaimed by forest without use of the areas by humans. In our work we analysed cleared grasslands. The questions we aimed to answer were the following:

    (i) What kind of vegetation changes were caused by different land use types?

    (ii) Is mowing a proper method for grassland management and nature protection in the studied system?

    (iii) Do the species composition and the diversity vary within two years when conditions of precipitation are different?

    In four sampling areas situted in Börzsöny mountains (North-Hungary), we registered the plant species and their cover values in ten quadrats per sampling area. We performed a site assessment in April, June and October, 2013-2014. We analysed the data by using cluster and ordination processes and we compared the sampling areas on the basis of the humidity preference and Shannon’s index of diversity. From nature conservation’s point of view, it is favourable that the cover of Potentilla alba occurring in the area was high. It is a specialist plant species with low stress resistance. However, due to tourism, it occured less frequently in the area and Bromus erectus became dominant instead. The species whose cover was more extensive in areas not affected by tourism – for example Alopecurus pratensis, Galium verum, Carex praecox, Trisetum flavescens – occurred less frequently in areas affected by tourism. On the short run, species did not completely disappear due to the changing conditions but their abundance decreased, as has been already supported by other surveys. The ordination analysis showed that the composition of species considerably differed with the portions of land cultivated in different ways. The change of the cover values was apparent not only in the case of the dominant species but of also in case of species with smaller cover. The decrease of diversity, the change of plant cover, the decrease of number of sensitive species as a result of tourism are typical phenomena all over the world. The Shannon’s diversity records showed that due to human presence and trampling the diversity declined. It was considerably lower in the year with less rain. In the year with more rain the diversity of species was considerably higher, however, the difference in between the surveyed areas was large. All these examples draw attention to the important role of environmental factors alongside the human factors. The water reserve also influences the productivity of grasslands and water has primary importance in the structure of plant communities. According to the survey, in the two areas not affected by tourism, in the rainier year the difference between the humidity preference of the species of the dry and the less dry patches became similar. On these areas, there were more species with higher humidity preferences in the rainier year, however, this tendency could not be observed in the rainier year on areas affected by tourism. The areas affected by tourism may react in a less flexible manner to the change in precipitation conditions. Based on our analysis, we can conclude that the surveyed semi-dry grasslands are extremely rich in species and therefore proper grassland management plans are needed. To preserve grasslands of high natural value, the impacts of the environmental factors should also be considered in addition to becoming acquainted with the history and the present conditions of landscape use.

  • The modification of natural lawn types from the effect of utilisation and cultivation in Barót mountains – Kovászna county
    80-81
    Views:
    39

    In the last decade the animal stock decreased to half couldn't optimally utilise the disposable natural lawns. Through the changed ownership's the utilisation of the natural lawns also changed. The areas near settlements are overladed and at the same time the big distant areas are only temporally or not at all utilised. On the places in use usually the fertilisation and maintenance work are cancelled. What kind of effect has the changed utilisation and cultivation on natural lawns, do they provoke modifications on it? Looking for an answer for these questions in 2002 a lawn typological measurement was started in two separated areas in Barót Mountains.
    This publication is about the observations during this monitoring work. The measurement has been made with the system of lawn typological classification of Tucra-Kovács and collaborators (1987). This classification analyses 3 factors: plant composition, facilities at production site, and the necessary technology for rising the crop. The one year long monitoring is not enough to make conclusions regarding the modification of lawn types, but the changed relations of last decade determined the natural lawn. On the places exposed to exaggerated tread the Dechampsia caespitosa is spreading, on acid soils the Nardus stricta, showing the formation of significant subtypes inside of Agrostis tenuis- Festuca rubra lawn type significant for beech tree zone.
    The spreading of woody plants is much significant. The shrubs are spreading showing that the lawn areas withdrew from cultivation is progressing to natural estate, to forest.

  • The effect of fertilization on the yield and N uptake of artificial grasslands 1.
    36-45
    Views:
    59

    The effects of different N, P and K supply levels and their combinations on the development, yield and N-uptake of an established all-grass sward were examined in the 28th year of a long-term fertilization experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, super phosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2001, however, the area had a satisfactory amount of 621 mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
         1. Grass herbage had a very favourable wet year in 2001 with over 700 mm rainfall during the total vegetation period. The hay yield of unfertilised control plots was by the 1st cut 1.7 t/ha, by the 2nd cut 1.2 t/ha, while the N3P3K3 treatment gave 8.8 t/ha and 4.2 t/ha resp., so NPK fertilization increased the air-dried hay yield from 3 t/ha to 13 t/ha (1st+2nd cuts together).
         2. The N-requirement of the young grass was moderate while the P-response significant by the 1st cut. The optimum P-supply was at the 150 mg/kg ammonium lactate soluble AL-P2O5 in the plow layer. There were no K-responses on this soil with 135 mg/kg AL-K2O values.
         3. There were no P responses any more by the 2nd cut even on the low P-supply soil, with 66 mg/kg AL-P2O5 value, while the applied N increased the hay yield 4 times. The optimum N content in the hay, leading to maximum yield, amounted 2% by the 1st cut and 2.5-3.0% at the 2nd cut. Applied N decreased air-dried content at the 1st cut from 33% to 31%, at the 2nd cut from 27% to 21%.
         4. On the soil, well supplied with PK, the 100 kg/ha/yr N treatment gave the maximum hay surpluses: at the 1st cut 61 kg, at the 2nd cut 14 kg, that is a total of 75 kg hay/kg N applied. The 200 kg/ha/yr plots yielded 43 kg, 300 kg/ha/yr yielded 34 kg hay/kg N applied. The primary sward hay had 0.34% NO3-N in the 300 kg/ha/yr treatment, which was over the allowable 1.25% NO3-N limit for animal foodstuff. The NO3-N content in the N-control plots amounted 0.06%, in the 100 kg/ha/yr treatment 0.10%, in the 200 kg/ha/yr treatment 0.22%. At the 2nd cut the hay had generally, half as high NO3-N content as in the 1st cut hay in all treatments.
         5. The apparent recovery of applied N, using difference method, was even more than 100% on the well supplied with PK soil suggesting that in these instances grass herbage could make a good use of soil NO3-N pool accumulated in soil during the previous period and not used by the crops.

  • Botanical and natural conservation comparison of seminatural and man-made grasslands in Paskom near Csakvar
    3-14
    Views:
    282

    During the survey, the vegetation, botanical composition and grassland management values of a grassland were studied. The study site was originally a pasture, then was transformed into an arable land and finally back to pasture. The 160-ha-sized area is called „Szűzföld” and is located in the Zámoly Basin, West Hungary. In 1998, grazing of Hungarian grey cattle has begun on the grassland. The changes in the vegetation were followed from 1998, making records in every 6th year (1998, 2015, 2021). 6 coenological records were made in each type of grasslands, by recording the list of the occurring taxa and their cover values. During the survey the main questions were the following: considering nature conservation, coenology and grassland management, in which direction does the vegetation evolve with the grazing? Was the grazing with Hungarian grey cattle successful?
    Based on the results, the grasslands became much more mosaic-like; drier and wetter vegetation patches could be separated (2015, 2021). As the grazing continued, species richness and diversity increased, especially in the wet areas.
    The number and the cover of economically important grass taxa and legumes have increased. The following taxa became dominant: Festuca pseudovina in the drier parts, Agrostis tenuis and A. stolonifera in the wet ones. Based on the life form system of Pignatti, the area is not overgrazed, as rosette and reptant taxa did not became dominant. Based on nature conservation values, cover of the taxa of natural grasslands increased.
    During the grazing, the meadow was universally covered mainly by weeds in 1998, and became much more valuable by 23 years later by means of nature conversation and grassland management. Moreover, this state has been stabilized according to the diversity values.
    Based on the results, the grazing with Hungarian grey cattle was successful by both nature conservational and economical means.

  • The role of grasslands in natural and farm-like game management: Papers presented at the „Timely questions in grassland and game management” scientific conference (Hungarian Academy of Sciences – Kaposvár University, 18-19 May 2006)
    25-33
    Views:
    74

    This paper investigates the relationship between grasslands and game management. It focuses on three questions:
    - grasslands as habitats for game,
    - grasslands as sites for prolification,
    - grasslands as sources of nutrition.
    Five so-called big, and five so-called small game species were considered, based on my own research and a literature review. Main results and consequences:
    - grasslands as ecosystems are more important in game management than as solely resources of nutrients,
    - compared to their territorial proportions, grasslands play a 2-3 time grates role in game management,
    - grasslands are more preferred on areas where vegetation types are frequently changing (a given vegetation occupies only a small area),
    - there is a remarkable seasonality in grassland use of small game, spring being the peak season,
    - classification of game considering grasslands as sources of nutrients:
    I. grasslands are hardly eaten by: red deer, wild pig, wild ducks
    II. grass is consumed, but it is not a main source of nutrients: for fallow deer
    III. grass is consumed as frequently as other forages by roe deer, wild sheep
    IV. grasslands are important feeding sites for pheasants, partridges
    V. grass is the main forage for hares, wild ducks

  • Effect of fertilization on the aminoacid content and aminoacid yield an established all-grass swarde 5.
    11-20
    Views:
    71

    The effects of different N, P and K supply levels and their combinations were examined on the amino acid content and yield of an established all-grass sward with seed mixture of eight grass species in the 28th year of a long term fertilization field experiment set up on a calcareous chernozem loamy soil. The lay-out and method of the trial, as well as the fertilizer responses on the hay yield and quality parameters, were published elsewhere (Kádár, 2005; Kádár and Győri, 2005). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2001, however, the area had a satisfactory amount of 621mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
         1. The content of GLU, ASP, HIS and ARG increased in the crude protein of the 1st cut hay as a function of N-fertilization up to 12-19%. The same time the content of PRO decreased up to 23%, CYS up to 25%, TRY up to 42% and ALA up to 48% compared to the N-control. The P fertilization raised the concentration of ASP, LEU, GLY, HIS, PHE and CYS, while the content of ALA dropped down to 41% that of P-contol.
         2. As a function of NxP positive interactions the content of ASP rose from 7.2 to 10.3%, HIS from 3.8 to 5.8%, ARG from 3.2 to 4.2% compared to the NP control, while the content of ALA diminished from 5.8 to 2.2%, TRY from 1.3 to 0.6%. The K fertilization also depressed the TRY synthesis. The N0P0K0 plots showed 1.59% TRY in protein, while the N3P3K3 maximum supply plots only 0.35%.
         3. The yield of amino acids was enhanced 3-4 times by N fertilization, 2.0-2.5 times by P fertilization and 20-30% by K fertilization. The amino acid yield increased on the N3P3K3 plots, compared to the N0P0K0 plots, in the case of ALA and TRY 3-4 times. Most of the other amino acids yielded 8-12 times more, HIS 14 times, PRO 16 times, GLY 18 times and CYS 20 times more. The maximum yield of essential amino acids made up 774 kg/ha, the total amino acid yield 1552 kg/ha and crude-protein 1779 kg/ha in the 1st cut hay.
         4. As a result of NxP interactions the ratio of ASP/ALA changed from 1.2 to 4.7, that of ARG/TRY from 2.5 to 6.3, that of HIS/TRY from 2.9 to 9.7 with the increased NP supply. Thus, fertilization can induce an imbalance of amino acids and so change or deteriorate the biological quality of protein. In similar circumstances the forage may require a TRY supplement to restore the imbalance of amino acids.

  • Effect of fertilization on the mineral element uptake of an established all-grass sward 4.
    3-10
    Views:
    46

    The effects of different N, P and K supply levels and their combinations were examined on the mineral element uptake of an established all-grass sward with seed mixture of eight grass species in the 28th year of a long term fertilization field experiment set up on a calcareous chernozem loamy soil. The lay-out and method of the trial as well as the fertilizer responses on the hay yield, nutritional values and element content were published elsewhere (Kádár, 2005, 2005a; Kádár és Győri, 2005). The soil of the growing site contained around 3% humus, 5% CaCO3, 20-22% clay in the ploughed layer and was originally, moderately well supplied with available K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m, the area was prone to drought. In 2001, however, the area had satisfactory amount of 621 mm precipitation with a fairly good distribution. The grass was established on 21. September 2000. The main results and conclusions can be summarised as follows:
         1. As a function of NxP positive interactions the element uptake of the 1st cut hay expressed as mean of K treatments increased between the N0P0 control and the maximum N3P3 levels as follows: K 62-190, N 45-218, Ca 16-51, S 5-24, P 4-24, Mg 4-16, Na 0.5-5.0 kg/ha; Mn 282-968, Sr 35-170, Zn 32-73, Ba 29-55, B 18-44, Cu 8-40 g/ha. The uptake of Ba increased from 23 to 62 g/ha, that of Ni from 1.5 to 8.9 g/ha as a result of KxP positive interactions. Uptake of Mo measure on K0P0 soil, however, dropped from 1.6 g/ha to 0.4 g/ha on the K3P3 soil as a function of negative KxP interactions.
         2. The 2nd cut hay harvested on 9th October 2001 showed only N-effects. The hay yield measured on N-control soil was 1.0 t/ha while on 300 kg/ha/yr N-treatment 3.9 t/ha. The uptake of Fe, Ba and Mo increased 2-fold; uptake of Ca, S, P, Sr, Zn and Co 3-4-fold, uptake of K, N, Mg, Mn, Ba and Cu 5-6-fold, while uptake of Na 33-fold with the maximum N-rate, compared to the N-control and as means of PK treatments.
         3. The 2 cuts together gave on the unfertilised control 3 t/ha, while on the N3P3K3 maximum supply level 13 t/ha hay yield. The uptake of Fe, Cr, B, Ni, Mo and Co increased 2-3 times, uptake of Ca, Mg, Mn, K, Zn, Ba and Cu 5-6 times, uptake of S, Sr and P 7-8 times, uptake of N 10 times, while uptake of Na 16 times on the maximum N3P3K3 supply levels, compared to the unfertilised control. The maximal mass of uptaken K and N made up 388 kg/ha, Ca 80 kg/ha, S 49 kg/ha, P 42 kg/ha (96 kg/ha P2O5), Mg 24 kg/ha in 2001.
         4. To have 1 t of air-dry hay it was used by grasses as a mean of 25 kg K (30 kg K2O), 20 kg N, 6 kg Ca (8-9 kg CaO), 2-3 kg S, 2 kg P (5 kg P2O5) and 2 kg Mg (3-4 kg MgO). For microelements: 300 g Na, 200 g Fe, 120 g Mn, 100 g Al, 16 g Sr, 13 g Zn, 8 g Ba, 5 g B, 5 g Cu, 1-2 g Ni, 1 g Mo, 0.2 g Cr and 0.1 g Co. The As, Hg Cd, Pb and Se were under detection limit of 1 g. Data may serve for assessing the nutrient demand of all-grass sward.

  • Effect of sheep grazing practices on the endoparasite population that can be recorded on grassland
    17-23
    Views:
    9

    Sampling for the occurrence of internal parasites of sheep was carried out in three extensively cultivated Achilleo - Festucetum pseudovinae grass communities with different grazing systems but with the same site conditions, in 2022 - 2023, at the MATE Research Institute in Karcag, Hungary. The sheep grazing regimes studied were: pastoral grazing, rotational grazing, and permanent, delta - forest grazing used on all grazing days. Microscopic analysis of the genomes and numbers of potentially infective oviposition and L3 larval stage endoparasites in sheep pastures was carried out on samples of faecal matter from grazed pastures and grass samples prepared using a 'larval feeder'. Our research objective was to clarify the effect of different sheep grazing practices on parasite infestation in a semi - natural grassland community with a solonyec soil composition.

  • The effects of fertilization on 2 year old established swards. Quality and nutrient yields 8.
    119-128
    Views:
    45

    The effects of different N, P and K supply levels and their combinations were examined on the quality nutritional values and nutrient yield of an established 2 year old all-grass sward in the 29th year of a long-term fertilization field experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 3-5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available N, K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4Nx4Px4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2002, the area had 401 mm precipitation and gave 2 cuts of grass. The 1st year results of the trial were published earlier (Kádár, 2005a, b). The main conclusions can be summarised as follows:
    1. The N-responses were decisive for both the hay quality and the hay and nutrient yields. The N-fertilizer increased the crude protein content and diminished the same time the crude fibre, crude ash and total sugar contents in the hay. The P-responses were not significant while the K-fertilization stimulated the crude ash accumulation in both cuts.
    2. The hay yield of 2 cuts in 2002 amounted to 1,7 t/ha on the N0P0K0 plots not receiving any fertilizer during the 29 experimental years, while on the maximum N3P3K3 supply levels figured out 8.7 t/ha. The same time here the crude fibre increased from 532 kg/ha to 2876 kg/ha, crude protein from 113 kg/ha to 1100 kg/ha, crude ash from 132 kg/ha to 672 kg/ha, crude fat from 39 kg/ha to 173 kg/ha, while the crude fibre/crude protein ratio dropped from 4.7 to 2.6.
    3. After 3 years storing the decisive part of carotine decomposed in the hay and gave as little as 0.9 mg/kg average value. The N-control gave 0.6 mg/kg, the 200 kg/ha/yr N-treatment resulted in 1.3 mg/kg, than the N-excess 300 kg/ha/yr plots showed again significantly less 0.9 mg/kg.
    4. The 2nd cut hay had a little yield however, was rich in crude protein and crude ash having 50-70% higher average content compared with the primary hay. The crude fat content was 3-times higher in the 2nd cut hay, while the crude fibre about 20% less. The ratio of crude fibre/crude protein figured as an average 1.9, while in the low-quality primary hay amounted 4.2.
    5. The N-fertilization depressed the content of N-free extract and acid detergent fibre (ADF) and enhanced the content of energy dependent protein (MFE), N-dependent metabolic protein (MFN) and nettoenergy (NE) parameters. The P fertilization did not cause any changes, while the K-fertilization decreased the N-free extract and the nettoenergy parameters (NE) and slightly stimulated the neutral detergent fibre (NDF) synthesis in the 2nd cut hay.

  • Long-term mowing on biomass composition in Pannonian dry grasslands in the Western-Cserhát
    35-38
    Views:
    56

    This study is focusing on the vegetation of seminatural dry grasslands. Those loess grasslands are valuable with large biodiversity; however their long-term preservation requires regular conservation management. The report demonstrates the results of mowing experiment, designed to suppress the spread of unpalatable grass species, Calamagrostis epigeios. The study site is located in mid-successional loss grasslands, in the Western-Cserhát, near Rád, northern Hungary.

    The study aims to the investigate the followings: Can the unpalatable Calamagrostis epigejos be suppressed by mowing? Are there possibilities to increase the diversity of sward by this? The study aims, to measure potential value-increasing effect of mowing, and to determine the carrying capacity in the aspect of grassland management.

    In 2001, Camagrostis epigeios was the species with the highest coverage rate according to the both treatment types, with an average cover value of 63%. However, as a result of mowing, a significant difference was detected in the amount of litter and legumes species as well. The number of species showed a slight increase in both types of treatment, from 15 to 37 in the mowed plots, but also from 18 to 27 in the control plots. We concluded that mowing twice a year was beneficial to modify botanical composition of a grassland. In a way it was suited well for agricultural usage, in particular grazing which can replace the expensive and time-consuming scythe. It is also a suitable management measure for controlling the native invader species as a Calamagrostis epigeios, and can significantly increase the proportion of species with higher forage values.

    Mowing has significantly increased the density of Calamagrostis epigeios, the species richness, and the diversity in the course of secondary succession. Therefore, mowing twice a year proved to be a successful management measure for controlling Calamagrostis epigeios, and for obtaining a sward composition. The treatment was effective in restoring grassland composition, although the achievement and maintenance of favourable conservation status for the grassland habitat require long-term management planning and regular treatment. According to the objectives, mowing not only promotes the control of the invasive species, but also the economic utilization of the area.

  • The effects of fertilization on 2 year old established swards. Mineral uptake 7.
    107-118
    Views:
    38

    The effects of different N, P and K supply levels and their combinations were examined on the mineral element uptake of an established 2 year old all-grass sward in the 29th year of a long-term fertilization field experiment set up on a calcareous chernozem soil. The soil of the growing site contained around 3% humus, 3-5% CaCO3, 20-22% clay in the ploughed layer and was originally moderately well supplied with available N, K, Mg, Mn and Cu and poorly supplied with P and Zn. The trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The fertilizers applied were Ca-ammonium nitrate, superphosphate and potassium chloride. The groundwater table was at a depth of 13-15 m and the area was prone to drought. In 2002 the area had 401 mm precipitation and gave 2 cuts of grass. The lay-out and method of the trial as well as the fertilizer responses on the hay yield and element content were published earlier (Kádár 2006). The main conclusions drawn as follows:
    1. While the hay yield was basically determined by N-fertilization which lifted the hay mass 5 times compared to the N-control, the uptake of elements was drastically modified through the N×K and N×P synergistic and antagonistic interactions.
    2. As a function of N×K treatments the uptake K changed for example at the 1st cut between 23-198 kg/ha, at the 2nd cut between 9-80 kg/ha. At the same time the uptake of Na fluctuated between 0.05-7.15 kg and 0.4-4.4 kg/ha, that of Mo 0.4-3.2 g/ha and 0.2-2.3 g/ha resp. As a function of N×P treatments the uptake of P changed at the 1st cut between 3-14 kg/ha, Sr between 12-388 g/ha, Mo between 0.5-4.5 g/ha. The nutrient accumulation at the 2nd cut showed an analogical picture.
    3. The K-fertilization stimulated accumulation of K and Ba, while inhibited the antagonistic metal cations’ uptake of Ca, Mg and Na. The increased P-supply rose the absorption of P, S, Sr and Ba while diminished the extracted amount of Mo, which dropped down by 1/3rd compared with the control. The liberal N-supply stimulated the incorporation of N, K, Mn, Sr and Cu resulting an increase of an order of magnitude.
    4. Between the two extreme supply levels (N0P0K0 and N3P3K3) there were found extreme differences in element uptake in 2002 as follows: 34-302 kg/ha K, 15-168 kg/ha N, 8-35 kg/ha Ca, 5-22 kg/ha S, 4-22 kg/ha P (9-51 kg/ha P2O5) and 3-14 kg/ha Mg. The incorporated Mn, Sr, Zn and Cu enhanced an order of magnitude on N3P3K3 plots compared to the N0P0K0 absolute control. Uptake of As, Cd, Co, Cr, Hg, Pb and Se left behind the detection limit of 1 g/ha.
    5. To have 1 t air-dry hay it was used by grasses 17-35 kg K, 9-19 kg N, 3-5 kg Ca, 2.0-2.5 kg S, 1.3-2.5 kg P (3.0-5.7 kg P2O5), 1.4-1.9 kg Mg, 170-980 g Na, 90-170 g Fe, 60-120 g Mn and Al, 10-50 g Sr, 7-25 g Zn, 3-6 g Ba, B and Cu, 0.3-1.3 g Mo and 0.4-0.9 g Ni. Data illustrate the nutrient turnover of a grassland and may be used for assessing the nutrient demand of all-grass sward.