Papers

Data mining through a business window (Part II.)

Published:
2010-06-14
Author
View
Keywords
How To Cite
Selected Style: APA
Harmati, A. (2010). Data mining through a business window (Part II.). Competitio, 9(1), 108-130. https://doi.org/10.21845/comp/2010/1/6
Abstract

This article demonstrates the real world applications of the technology of data mining by way of a data mining project. This project was created by the author and the analyzed database was provided by a real company. The aim of the analysis was to create a classification model for this firm. To achieve this we applied logistic regression models, a decision tree and a neural network. The best model can help the company to consciously establish which customers will probably respond positively to a personal letter in a direct marketing campaign. In this way potentially favourable customers are reached more efficiently than in the case of randomized selection. This increases the efficiency of the company, and the generalization of results can confirm several advantages of data mining as used in business life.

JEL classification: C25, C44, C45, C49, C88

References
  1. Ary Bálint Dávid – Dr. Imre Sándor [2006]: Számlázás újgenerációs telekommunikációs hálózatokban. Híradástechnika, LXI. évfolyam, 10. szám, 40–45. o.
  2. Berry, M. J. A. – Linoff, G. [1997]: Data Mining Techniques: For Marketing, Sales, and Customer Support. John Wiley and Sons, Inc., New York.
  3. Coppock, D. S. [2002]: Data Modeling and Mining: Why Lift? In: http://www.information-management.com/news/5329-1.html (Letöltve: 2009. február 21.)
  4. Fisher, R. A. [1915]: Frequency Distribution of the Values of the Correlation Coefficient in Samples of an Indefinitely Large Population. Biometrika, vol. 10. no. 4. 507–521. o.
  5. Hunyadi László – Vita László [2004]: Statisztika közgazdászoknak (Harmadik átdolgozott kiadás). KSH, Budapest.
  6. Lucas, A. [2004]: The Gini Coefficient. In: http://www.rhinorisk.com/Publications/Gini%20Coefficients.pdf (Letöltve: 2009. március 09.)
  7. Márkus Béla [1994]: Térinformatika (Főiskolai jegyzet). Erdészeti és Faipari Egyetem, Földmérési és Földrendezői Főiskolai Kar, Székesfehérvár. 23. o.
  8. MNB [2008]: Lekérdezhető árfolyamok. In: http://www.mnb.hu/engine.aspx?page=arfolyamtablazat&query =2008.11.26.,2008.11.26.,1,EUR (Letöltve: 2008. december 12.)
  9. SAS [2006]: Introduction to SAS® Enterprise MinerTM Course Notes. SAS Institute INC., Cary, NC.
  10. SAS [2008]: Getting Started with SAS® Enterprise MinerTM 5.3. SAS Institute Inc., Cary, NC. In: http://support.sas.com/documentation/onlinedoc/miner/getstarted53.pdf (Letöltve: 2009. február 12.)
  11. Tan, P. N. – Steinbach, M. – Kumar, V. [2005]: Introduction to Data Mining. Addison-Wesley, Richmond, TX.