Search
Search Results
-
Herbicide tolerance of maize genotypes in the wet 2016 year
13-18Views:171The herbicide tolerance levels of 49 Martonvásár inbred parents were examined in Martonvásár in a herbicide susceptibility trial in 2016. The normal dosage recommended in the permit documentations and double dosage were used for the 12 small-plot herbicide treatments performed in two repetitions. Spraying of early post-emergent herbicides was carried out in the 1–2-leaf stage, while post-emergent treatments were applied in the 7–8-leaf stage of maize. The extent of phytotoxicity was scored for the early post-emergent herbicides two and four weeks after treatments and for the post-emergent herbicides two weeks after treatments, respectively. Some of the herbicides examined are not approved in seed production; however it is important to know the reaction of maize parent genotypes for every type of herbicides. The active agent topramezone was withdrawn from the market in 2015, but it was included in the trials as its usage was allowed until stocks run out in 2016. The herbicide agents were examined as follows: mesotrione + S-metolachlor + terbutylazine; isoxaflutol + tiencarbazon methyl + cyprosulfamide; isoxaflutol + cyprosulfamide; mesotrione + terbuthylazine; tembotrione + isoxidifen-ethyl; mesotrione + nicosulfuron; prosulfu ron; nicosulfuron +prosulfuron + dicamba; bentazone + dicamba; nicosulfuron; topramezone; foramsulfuron + isoxadifen-ethyl.
Among early post-emergent herbicides, isoxaflutol + cyprosulfamide caused the less phytotoxic damage in the genotypes. The large amount of precipitation during the spring facilitated the infiltration of the active ingredient S-metolachlor, used regularly and successfully also in seed production, into the root zone, resulting in phytotoxic symptoms on susceptible inbred lines at the time of the first inspection. These genotypes recovered by the end of the vegetation period. The spring weather was cooler than usual, retarding the development of maize and thus led to the slower fermentation of herbicide active ingredients, accordingly, all of the post-emergent herbicides caused visible phytotoxic symptoms on some of genotypes. The most severe damages were generally caused by the double dosage of nicosulfuron + prosulfuron + dicamba, nicosulfuron, and foramsulfuron + isoxadifen-ethyl. -
Effects of spray carrier quality on biological activity of terbuthylazine + mesotrione herbicide combination
110-115Views:112Field experiments were conducted to study affects of pH and hardness of spray water on efficacy of a herbicide combination (terbuthylazine + mesotrione) influenced by several pH adjusters and adjuvants in Debrecen, Hungary in 2008, 2009 and 2010. Favourable or unfavourable effects of pH and hardness of spray water could be observed under field conditions. Evaluation of weed control efficacy is suitable for examination of affects of spray water pH and hardness on herbicides. The terbuthylazine and mesotrione herbicide combination is suitable to control monocotyledonous and dicotyledonous weed species, however, significant effects of hardness and pH of spray carrier was observed only in control of monocotyledonous weeds. Certain pH adjusters (e.g. ammonium nitrate) can lessen harmful affects of water hardness effectively. Significant loss of efficacy of sensitive herbicide was found in hard water (by about 50-60%), and surfactants was not able to eliminate that harmful affect. However, biological activity was the same as in soft water with ammonium nitrate which can overcome the antagonism of salts. That pH adjuster had a more significant affect on the efficacy of the herbicide than the surfactant had in that experiment.
-
Yield of herbicide tolerant sunflower hybrids due to the different herbicide treatments
121-125Views:129Sunflower is our most important oil-plant grown on the largest area in Hungary. In Europe sunflower has been grown since the 16th century. In recent years sunflower growing area is between 450-500 thousand hectares. Weed management in sunflower production is getting more and more difficult in case of annual and perennial dicotyledonous weeds, especially in dry springs. Two active ingredients, imazamox and tribenuron-methyl could be a solution for farmers for the control of these weeds in herbicide tolerant sunflower hybrids (Christensen-Reisinger 2000, Hódi-Torma 2004, Nagy et al. 2006). Most of the farmers choose the Clearfield technology and the use of tribenuron-methyl herbicides. In 2009 imazamox- (IMI) and tribenuron-methyl- (SU) tolerant sunflower hybrids were produced on 200 hectares in Hungary, of which 150 hectares was IMI, while 50 hectares was SU-hybrids. Small plot experiments were carried out to investigate the phytotoxicity of herbicides on imazamox (IMI) and tribenuron-methyl (SU) tolerant sunflower hybrids under field conditions. At harvest we measured the moisture content of achenes and average yield.
-
Sensitivity of maize to herbicides in experiments in Martonvásár in 2015
47-52Views:215The phytotoxic effect of herbicides applied post-emergence was investigated in a herbicide sensitivity experiment set up on parental maize genotypes in Martonvásár. A total of 48 Martonvásár inbred lines and 12 single line crosses were included in small-plot experiments set up in two replications. Ten herbicides were applied at the normal authorised rate and at twice this quantity. Compounds intended for pre-emergence application were applied when maize was in the 3–4-leaf stage and post-emergence herbicides in the 7–8-leaf stage of development. The extent of phytotoxicity was scored two weeks after treatment. Some of the herbicides tested are not authorised for use in seed production fields, but it is important to know how the parental genotypes respond to all types of herbicides. Phytotoxic symptoms of varying intensity were only observed on a third of the 60 parental genotypes examined; the majority of the lines exhibited no reaction to any of the herbicides. Averaged over the 60 genotypes the level of phytotoxic damage was less than 10% for the single dose. When the double dose was applied somewhat more severe damage was induced by products containing Mesotrione + Nicosulfuron or Foramsulfuron + Isoxadifen-ethyl, but this was still below 15%. The herbicide dose had a three times stronger influence on the intensity of the symptoms than the type of herbicide. With the exception of Topramezone, there was a significant difference between the effects of the normal and double doses. The greatest dose effect differences, in decreasing order, were observed for Mesotrione + Nicosulfuron, Foramsulfuron + Isoxadifen-ethyl. Nicosulfuron and Mesotrione + Terbutylazine. The Mesotrione + Terbutylazine active ingredient combination only caused mild (<10%) symptoms on a total of 11 genotypes, while the Mesotrione + Nicosulfuron combination induced more severe phytotoxic symptoms on 26 lines. When Nicosulfuron was applied alone it caused milder symptoms on fewer genotypes than in combination with Mesotrione. Among compounds of the sulphonyl-urea type, the least severe symptoms on the fewest genotypes were recorded in the case of Prosulfuron.
-
Weed control with herbicide incorporation in sunflower
73-76Views:162During the last decade certificate registration of 13 active ingedients were removed by European Union from sunflower herbicide market, including the basis for the incorporating technology, the trifluralin active ingredient as well. Its relative, the benfluralin active ingredient, which include the Balan 600 WDG herbicide product in sunflower, will be sold again from 2015 spring in Hungarian pesticide market. It has a broad-spectrum and lond residue besides it has very high level selectivity on sunflower. It has very good effect against annual monocotweeds such as common barnyadgrass, foxtail species, large crabgrass and wild proso millet, dicotyledonous weeds such as common lambsquarters,and redroot pigweed. It has significant side-effect against common ragweed, black nightshade, wild buckweed and prostrate knotweed. The long effect residue provide the weed-free til harvest. Benfluralin is totally selective on sunflower, as no colouring, any deformation or growth inhibition was not observed during the entire growing season. It should be sprayed 3-4 days before sowing within 1 hour and to be incorporated into the soil in 4-6 cm depth with tillage equipment. It can be used in tank mix with fluorochloridon in incorporated technology against annual dicotyledonous weeds. After the Balan incorporation can be used postemergence timing imazamox and tribenuron-metil active substances against hard kill and deeply germinating weeds. The products can not be used in tank mix with bacterial products.
-
Field Tests on the Herbicide Tolerance of Various Maize Genotypes
21-23Views:81Investigations were made in Martonvásár on the herbicide tolerance of 22 inbred maize lines and 3 parental single crosses when treated with one herbicide applied after sowing, prior to emergence, and with seven applied post-emergence in the 6-8-leaf stage. Visible damage was scored 14 days after the treatment.
An analysis of the phytotoxic effects led to the conclusion that a single dose of the tested herbicides did not cause any damage to the genotypes investigated, with the exception of one inbred line, which was extremely sensitive to herbicides of the sulphonyl carbamide type and moderately sensitive to both rates of dicamba. In many cases, a double dose of the herbicides caused mild or moderate symptoms on the maize lines. -
The effect of different herbicide on the number and activity of living microorganisms in soil
76-82Views:130Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
We can summarize our results as follows:
• In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
• Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
• In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
• Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
• Different herbicides containing the same active compound had similar influences on soil microoorganisms.
• A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides -
Phytotoxicity levels in a wet year in an experiment on maize sensitivity to herbicides
92-96Views:207The phytotoxic effects of herbicides applied pre-, early post- and post-emergence were studied in maize in a herbicide sensitivity experiment were set up in Martonvásár and Törökszentmiklós. The herbicides were applied in normal and in double doses to 37 Martonvásár inbred lines and to six parental single crosses. The small-plot experiments were set up in two replications. The wet weather that followed the pre- and early post-emergence treatments promoted the appearance of phytotoxic symptoms on maize. The degree of phytotoxicity was recorded on the 14th day after post-emergence treatment and on the 14th and 28th days after the pre- and early postemergence treatments. Herbicides applied pre-emergence only caused slight symptoms on maize. Although the double dose increased the damage, it was still not more than 5% on average. The symptoms caused by herbicides applied in the early post-emergence stage were more intensive than those detected in the pre-emergence treatments. However, the damage caused by the double dose of isoxaflutol + thiencarbazone-methyl and by the split treatment with nicosulfuron remained below 10%. The symptoms became somewhat more severe at the 2nd scoring date. Among the post-emergence treatments the maize genotypes had the least tolerance of the mesotrione + nicosulfuron combination of active ingredients, where the double quantities resulted in 13–14% damage in average.
-
Changes in the herbicide tolerance of maize genotypes in wet and dry years
124-127Views:90The tolerance of 15 inbred maize lines grown on chernozem soil with forest residues in Martonvásár was tested against herbicides applied post-emergence in two dry, warm years (2003 and 2011) and in two cool, wet years (2004 and 2010). The herbicides mesotrione + terbutylazine, nicosulfuron and dicamba were applied to maize inbred lines in the 7–8-leaf stage at the maximum dose authorised for practical use and at double this rate. The plants were scored for the intensity of visible phytotoxic symptoms 14 days after treatment.
The level of phytotoxicity observed in dry, warm years was 5.14%, averaged over the lines, herbicides and rates. The intensity of visible symptoms was almost 2.5 times as great in cool, wet years (12.76 %).
Averaged over the four years, the lines and the rates, the least damage was caused by dicamba (5.77 %), followed by mesotrione + terbutylazine (7.23 %). The most severe symptoms were induced by nicosulfuron (16.17 %). This could be attributed to the fact that some of the inbred lines were extremely sensitive to herbicides, especially those of the sulfonylurea type.
A difference of more than 1.5 times was observed between the two doses, but the correlation between the concentration and the severity of the visual symptoms was not strictly linear. Compared to the normal dose (100 %) the double rate resulted in a 162.5% increase in symptom severity. In most cases plants treated with the normal dose were symptom-free or only exhibited a low level of phytotoxicity. -
Effects of some herbicides on the microbiological characteristics of soil nitrogen cycle under maize plantation
93-100Views:84Nitrogen is a key element for the living organisms and influence not only for the quantity but for the quality of the yield, considerable. Availability of nitrogen from the soil is influenced by several microbiological processes of the Nitrogen-cycle. Among the intensive agricultural production the herbicide application cannot be omitted more information needs therefore about the inhibitor effect of herbicides on the different microorganisms.
An experiment was set up on calcareous chernozem soil under maize culture. Effect of four different herbicides (Acenit, Frontier, Merlin, and Wing) was investigated. The effect of herbicides was measured to four microbiological parameters of the Nitrogencycle (abundance of nitrifying bacteria, nitrate solubilisation, biomass nitrogen and urease enzyme activity). There were singledouble- and five times of recommended doses of herbicides applied for two onsecutive vegetation periods.
From the results of the different doses of herbicides, the following can be stated:
– The Acenit has a stimulating effect on nitrifying bacteria in general. The Frontier and Merlin also influenced the quantity of nitrifyers, however in certain cases decreased in another cases increased the number of bacteria.
– The double doses and five times doses of herbicides was found to be increasing the nitrate content of soil, -especially in 2006.
– The quantity of microbial biomass nitrogen increased in the 60% of treatments and decreased in the 40% of the treatments.
– Except of the result of Wing in 2006 and Merlin in 2005, the effect of simple dose herbicides was the smallest on the urease enzyme activity. According to the results the effect of Merlin was positive; the effect of Wing was negative on the soil enzyme’s activity.
Regarding the application of four different herbicides in three different doses on the microbiological parameters of soil (at two consecutive years-) in 39% of the treatments has resulted a significant inhibitory effect, 28% of the treatments, however have significant stimulating effect on the parameters measured. More than 50% of the inhibitory effect was measured in case of the Wing, at more than 50% of the Frontier the microbiological parameters have not changed. -
Sensitivity study on Virginia fanpetals (Sida hermaphrodita (L.) RUSBY) cv PETEMI to different herbicide agents
89-92Views:84The cultivation of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) is a relatively new phenomenon in Europe. On the basis of the biology of the plant and the practical work implemented, it has been stated that the traditional field practice does not provide the appropriate conditions of biomass production for energetic purpose. The development of the proper weed control is inevitable for the healthy stand, as in the early phenophases the plant is growing slowly and it is exposed to weeds.
Our objective was to test some herbicide agents as no previous relevant data had been published. -
Fusarium culmorum isolated from rhizosphere of wooly cupgrass (Eriochloa villosa) in Debrecen (East Hungary)
93-96Views:166Wooly cupgrass (Eriochloa villosa) is an East-Asian originated weed species and it has been spreaded worldwide by now. The first occurrence of this species in Hungary was observed and published in 2008 nearby Gesztely village (Borsod-Abaúj-Zemplén county, North-East Hungary) than in the summer of 2011 a significant population was discovered next to Debrecen city (Hajdú-Bihar county, East Hungary).
In 2013 this weed was also reported from Szentborbás village, Somogy county (South-West Hungary). These observations of spreading and its biological features (production of stolons and large number of seeds, moreover herbicide tolerance) indicate that wooly cupgrass (E. villosa) has a great potential of invasiveness, so it may become a hazardous weed not only in Hungary but in all over the world.
The objective of this study was to identify the fungus which was isolated from wooly cupgrass (E. villosa) root residue samples which were collected after maize harvesting on arable land in late autumn, near Debrecen. The identification of the fungus based on morphological characters of colonies and the features of conidia developed on potato dextrose agar (PDA) plates. After the examination of axenic culture we revealed that the fungus from rhizosphere of wooly cupgrass was Fusarium culmorum. Pathogenicity and/or endophytic relationship between the fungus and wooly cupgrass is still uncertain so pathogenicity tests and reisolations from plants are in progress.
-
Use of Clearfield technology in the sunflower
114-118Views:88Sunflower is one of the most important cultivated plants in Hungary. We carried out our research in 2009 with eight imidazolinone resistant hybrids and one conventional variety in order to compare the efficiency and selectivity of Clearfield technology to the conventional system. In the trial the Clearfield hybrids were treated by 3,5 l/ha Wing-P (pre) and 1,2 l/ha Pulsar 40 SL(post). The plot of the conventional variety was sprayed by 4,0 l/ha Wing-P and 0,5 l/ha Goal Duplo (pre).
Wing-P also had a poor effect because of the lack of rain. Pulsar 40 SL gave an excellent result against the 2-6 leaves of monocotyledonous and the dicotyledonous weeds. Only the well-developed Hibiscus trionum survived the treatment. The combination of Wing-P and the Goal Duplo herbicide provided poor result against the caracteristical weeds of the experimental area because of the lack of rain. Oxifluorfen with contact effect burned the leaves of the sunflower. -
Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
121-126Views:88Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
On the basis of results the following can be stated:
1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass. -
Woolly cupgrass (Eriochloa villosa /Thunb./ Kunth), a recently occured invasive weed in Trans-Tisza Region and a trial for control in maize
53-57Views:302To the effective control of invasive weeds are essential to prevent establish, if has already happened obstacle to massive accumulation, and promoting the efficient and rapid eradication, if it is possible. The Woolly cupgrass (Eriochloa villosa /Thunb./ Kunth) belongs to weeds which “hard to control” especially in corn. One of the difficulties of effective control is the prolonged emergence causing avoidance of several individuals the contact with pre-emergent herbicides. Another problem arises due to the intensive use of post-emergence herbicide products with short duration of action. To optimalize of timing of treatment is essential for successful control of later emerging weeds. The recently established Woolly cupgrass in Hungary shows resistance or reduced susceptibility to substantial portion of herbicides used in corn. The data collected from small-plot trials demonstrates that application of sulfonylurea or selective monoctyledonous herbicides can be effective against the Woolly cupgrass.
-
László Szabó herbologist awarded by „Antal Gulyás medallion for crop protection“ in 2014 (laudation)
5-7Views:264The Public Utility for Development of Crop Protection Teaching (NOFKA) and The Hajdú-Bihar County Regional Association of Hungarian Chamber of Crop Protection Specialists and Plant Doctors (Chamber) established a joined Award Committee in 2011, which intend to serve as moral appreciation to prominent persons with excellent achievements by awarding the „Antal Gulyás medallion for crop protection” which are available for outstanding teachers, researchers, and practical crop protection specialists.
In 2014 László Szabó herbologist has been decorated with the „Antal Gulyás medallion for crop protection” for his “excellence in applied herbology and practical research activity on herbicide applications, moreover for knowledge transfer on weed management”.
-
Weed control possibilities of „energy willow” (Salix viminalis L.)
108-112Views:118In Spring 2005, the owner of the Szalka-Pig Ltd. of Mateszalka, decided to import the willow species Salix viminalis L. and to create a plantation for energy production purposes on the humid arable lands in his ownership. In 2006, he enlarged this area by 43 hectares. The owner further decided not only to plant this species on the more adherent (KA 70), but also onto the incoherent structured sand (KA 30-35). His main argument was that the cost of coal tar derivatives as energy sources was rapidly increasing in Hungary, so he needed to find a cheaper energy source for the drying of his products and for the heating of his buildings. He also planned to change his gas and oil heating equipment.
The willow’s cropping technology is being established in our country. One of our tasks is to work out an adequate weed control plan. The professional and safe use of herbicides can increase the success of production. In our paper, we discuss the data collected on treatments applied in the pre-emergent stage. The applied herbicide combinations (terbutilazin+S-metolaklór, mezotrion+ S-metolaklór, pendimetalin+S-metolaklór, oxyfluorfen+ S-metolaklór) yielded good results in large scale experiments. -
Observation of some parameters on adult millet (Panicum miliaceum L.) individuals by pre-post herbicides controlling mostly grass type annual weeds
93-96Views:69The experiment was conducted in warmer mean daily temperature than the many years average, and almost in the same precipitation conditition as the many years average. The herbicides employed were sprayed in the 3-4 leaf stages developing phase of the millet (Panicum miliaceum L.) population by the dose of officially proposed. On the basic of the results, the herbicides didn’t effect deleteriously, in most instances, on the cultur plants in sort and long periodus at all. Tendenciously the values of parameters observed were sligtly better after the Stomp 330EC than the Dual Gold 960EC. ( The values of the parameters are significantly better at the treated variants than the control ones, are in realation with the wheather and development stile of the millet, beside the different weeding status of the plots.)
-
The role and impact of N-Lock (N-stabilizer) to the utilization of N in the main arable crops
51-55Views:230The nitrogen stabilizer called N-Lock can be used primarily with solid and liquid urea, UAN and other liquid nitrogen, slurry and manure. In corn it can be applied incorporated before sowing or with row-cultivator or applied with postemergent timing in tank-mix. In postemergent timing need precipitation for long effect. In oil seed rape and autumn cereals the N-Lock should be applied with liquid nitrogen in tank mix late winter or early spring (February-March). The dose rate is 2.5 l/ha. N-Lock increases the yield of maize, winter oil seed rape, winter wheat and winter barley 5-20 %. The yield increasing can be given the thousand grain weight. In case of high doses of nitrogen it can be observed higher yield. The quality parameter also improved, especially the oil content of winter oil seed rape and protein and gluten contents of winter wheat. The use of N-Lock increases the nitrogen retention of soil and reduces nitrate leaching towards the groundwater and the greenhouse effect gas emissions into the atmosphere. The degradation of the applied nitrogen is slowing down and the plant can uptake more nitrogen in long period. The effect of N-Lock the nitrogen is located in the upper soil layer of 0-30 cm and increasing the ammonium nitrogen form. The product can be mixed with herbicide products in main arable crops.
-
Biological potential of plant pathogenic fungi on weeds: A mini-review essay
59-66Views:144The invasion of weeds into productive areas has substantial negative effects on native ecosystems as well as agricultural production systems globally. Consequently, the task of maintaining or restoring these systems will become increasingly challenging without consistent, ongoing management efforts. The intensifying emergence of herbicide resistance in numerous weed species, coupled with the unintended pollution caused by synthetic herbicides, underscores the growing necessity for alternative, environmentally friendly, and sustainable management techniques, such as the utilisation of bioherbicides. Plant pathogenic microbes play an important role in biologically management of weeds, with the utilization of plant pathogenic fungi emerging as a promising area of study for novel research trends aimed at weed management without reliance of herbicides and to mitigate environmental pollution. A potential solution to decreasing pesticide usage involves the development of bioherbicides containing fungal active ingredients. Among the most commonly utilised fungi in bioherbicides are genera like Alternaria, Colletotrichum, Cercospora, Fusarium, Phomopsis, Phytophthora, Phoma, and Puccinia. Increased weed resistance to herbicides has influenced new strategies for weed management, with some fungi from genera such as Colletotrichum and Phoma already employed for weed control. Nonetheless, it is evident from reviews that further research is imperative in this domain, with particular emphasis on analysing the efficacy of each plant pathogenic fungi.
-
Comparative analysis of maize weed control system and the competitive effect of sorghum
97-104Views:100In our investigation we used different weed control technologies in the different phenology states of the maize. The experiment have been
carried out in Hódmezővásárhely, in the Experiment garden of the Pilot farm of University of Szeged Faculty of Agriculture, on meadow
chernozem soil, on 24 m2 plots, in 3 replications, randomized blotch design. The experiment can be regarded as 15 weed-control strategies
where, in addition to the untreated control, six chemicals or chemical-combinations are applied (Spectrum 720 EC, Motivell Turbo D,
Stellar + Dash HC, Clio + Akris SE + Dash HC, Clio + Dash HC) in five different times (pre, early post, post and two late post) and eight
mechanical weed-control technologies were used. Hoeing took place connected to the herbicide treatments in different times: until 2-3-leave
age weedless, in 3-4-leave age hoed once, from 3-4-leave age weedless, in 6-7-leave age hoed once, from 6-7-leave age weedless, in 8-leave
age hoed once, from 8-leave age weedless.
Our results were assessed by chemical efficiency examination, maize length measurement, corncob-length and fertility examination,
Sorghum plant-number determination and yield weighing carried out in four periods. The data were evaluated by a one-factor analysis of
variance and a two-factor linear regression analysis.