Search

Published After
Published Before

Search Results

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    100

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • Statistical comparison of soil analysing results of chernozem soils
    93-99
    Views:
    143

    The soil fertility was degraded as a result of unreasonable tillage, therefore the application of site-specific nutrient replacement is necessary. It is essential for the application of precision fertilization to know the location, extension, soil properties and nutrient-supply of the different soil types of
    cultivated areas.
    We collected soil samples from 580 hectares of land in 2006. Soil samples were collected from every 5 ha in 30 and 60 cm depths during Spring from 20.05.2006 to 12.06.2006 and again in Autumn from 09.19.2006 to 02.10.2006. Soil samples were analysed at the Department of Agricultural Chemistry and Soil Science of DE-ATC.
    The two examined soils are slightly calcareous, weakly saline, poor in zinc. The calcareous chernozem soil is slightly acid, the content of humus, nitrogen, phosphorus and potassium is medium in this soil. The meadow chernozem soil is slightly alkaline, and properly supplied with humus and potassium, and middling supplied with nitrogen and phosphorus. The meadow chernozem soil is more heterogenous in soil plasticity, lime, saline, nitrogen phosphorus and potassium content and less heterogenous in pH and zinc content than the calcareous chernozem soil.
    Standard deviation of measured values in pH, soil plasticity, humus and nitrogen content significantly differ between the examined soil types. The soil plasticity, pH, humus, nitrogen and zinc content significantly differ among calcareous chernozem soil and meadow chernozem soil, but the difference in phosphorus content can be statistically proven only in case of Spring soil sampling.

  • Changes of some soil chemical and microbiological characteristics in a long-term fertilization experiment in Hungary
    253-265
    Views:
    329

    Agricultural management practices – directly or indirectly – influence soil properties.

    Fertilization rates and crop rotation can strongly affect soil pH, soil nutrient supply and soil organic matter content due to the changes of microbial processes. The objective of this study was to compare the effects of different fertilization doses in monoculture and tri-culture of maize (monoculture: only maize grown since 1983, tri-culture: it is a three-year crop rotation system: pea – winter wheat – maize) on selected soil characteristics. The long-term fertilization experiments were set up in 1983 in Eastern Hungary. These experiments are situated west of Debrecen in Hajdúság loess region, on calcareous chernozem (according to WRB: Chernozems).

    The test plant was maize (Zea mays L.). One-one pilot blocks were selected from monoculture and tri-culture of the long-term experiments. The observed soil samples were taken in the 30th year of the experiment, in 2013. The doses of NPK fertilizers increased parallel together, so the effects of N-, P- and K-fertilizers cannot be separated.

    With the increasing fertilizer doses, the soil pH has decreased in both crop production systems and, in parallel, the hydrolytic acidity has significantly increased. A close negative correlation was proved between the pHH2O, pHKCl and hydrolytic acidity. An increased nutrient content in soil was recorded in every NPK treatment and the available phosphorus and nitrate content increased in higher proportion than that of potassium. Of the measured parameters of C-and N-cycles, fertilization has mostly had a positive effect on the microbial activity of soils. Besides the effects of fertilizer doses, correlation were looked for between soil microbiological properties. Evaluating the ratios among the measured parameters (organic carbon and microbial biomass carbon, OC/MBC ratio; carbon-dioxide and microbial biomass carbon; CO2/MBC proportion), the fertilization rate seems to be favoured by the increase of amounts of organic compounds

  • Mitigation of the effect of secondary salinization by micro soil conditioning
    115-119
    Views:
    225

    This research has the general goal to meet the customization of agriculture in small scale farming. We are developing a technique using micro doses of soil conditioners and organic material applied in the root zone of vegetable crops. We expected to change the physical and chemical properties of the affected soil, which has been irrigated with salty water. Two different soil conditioners were tested. A lysimeter experiment including 8 simple drainage lysimeters was set up in the Research Institute of Karcag IAREF University of Debrecen in 2017. The main goal was to study the effect of different soil conditioners on the soil endangered by secondary salinization induced by irrigation with saline water. In order to compare the difference between the treatments, we collected soil samples, water samples, and determined the yields. Chili pepper (Capsicum annuum) was used as an indicator crop during one specific agricultural season. The technique called micro soil conditioning is rational because several reasons. The roles of the technique are various, for example it can serve as a source of carbon or a container for soil amendments and can minimize evaporation. We found this technique not to interfere with the chemical reaction or the interaction with the plants. However, the micro doses of soil amendments had the role to minimize the risk of soil degradation and do not significantly influence soil respiration. In addition, by improving soil properties, soil conditioning increases the leaching of the excess of salts from the root zone. In fact, this technique can decrease the cost of the inputs and improves the production of vegetables, and at the same time mitigates the effect of secondary salinization.

  • Nitrogen Supplying Capacity of Brown Forest Soil under Different Cropping Practices and 0.01 M CaCl2 Soluble Organic Nitrogen
    17-23
    Views:
    111

    The best known and most remarkable example of continuous production in Hungary is the Westsik’s crop rotation experiment, which was established in 1929, and is still in use to study the effects of organic manure treatment, to develop models, and predict the likely effects of different cropping systems on soil properties and crop yields. In this respect, Westsik’s crop rotation experiment provides data of immediate value to farmers concerning the applications of green, straw and farmyard manure, as well as data sets for scientific research.
    Although commonly ignored, the release of nitrogen by root and green manure crops has a significant impact on soil organic matter turnover. The design of sustainable nitrogen management strategies requires a better understanding of the processes influencing nitrogen supplying capacity, as the effects of soil organic matter on soil productivity and crop yield are still very uncertain and require further research. In the treatments of Westsik’s crop rotation experiment, nutrients removed from soil through plant growth and harvesting are replaced either by fertilisers and/or organic manure. Data can be used to study the nitrogen supplying capacity of soil under different cropping systems and its effect on the 0.01 M CaCl2 soluble organic nitrogen content of soil.
    The aim of this paper is to present data on the nitrogen supplying capacity of brown forest soil from Westsik’s crop rotation experiment and to study its correlation with hundredth molar calcium-chloride soluble organic nitrogen. The main objective is to determine the effects of root and green manure crops on the nitrogen supplying capacity of soil under different cropping systems. The nitrogen supplying capacity was calculated as a difference of plant uptake, organic manure and fertiliser supply.
    The 0.01 M CaCl2 soluble organic nitrogen test has proved reliable for determining the nitrogen supplying capacity of soils. Brown forest soils are low in organic matter and in the F-1 fallow-rye-potato rotation, the nitrogen supplying capacity was 15.6 kg/ha/year. 0.01 M CaCl2 soluble organic nitrogen content was as low as 1.73 mg/kg soil. Roots and green manure increased the nitrogen supplying capacity of soil by more than 100%. This increase is caused by lupine, a legumes crop, which is very well adapted to the acidic soil conditions of the Nyírség region, and cultivated as a green or root manure crop to increase soil fertility.

  • Impact of the integration of lupine (Lupinus albus) into crop rotation on the extent of soil compaction in the Westsik longterm field trial
    529-537
    Views:
    121

    In order to reduce or eliminate soil compaction, rational crop rotation and appropriate sequence of crops have an increasingly important role in addition to mechanical and tillage solutions. In this respect, introduction of greening in recent years has been a major step, which focuses on aspects of environmentally conscious, soil conserving farming and the improvement of biodiversity. The cornerstone of this strategy is the cultivation of crops that have a beneficial effect on soil properties, such as the use of nitrogen-fixing plants and green manure plants in the cultivation system that have a beneficial effect on soil structure. In our examinations, penetrometer measurements were carried out in the second longest crop rotation-based field experiment in Europe in order to quantify the effects of green crops and crop rotation strategies on soil resistance. Our aim was to evaluate and compare the impact of lupine (Lupinus albus) on the penetration resistance of soil on sour sandy soils. At the time of the penetration resistance measurement, different crop rotations had a significant effect on the development of the parameter in the examined soil layer. The most favourable penetration resistance values were found in the crop rotation, which included lupine as a green manure. The favourable effect is dominant below the cultivated layer (0–40 cm), which is statistically verified. The values of penetration resistance of the cultivated soil layer of lupine sown as primary green manure did not differ significantly from the values measured in the case of the fallowing-based crop rotation. Therefore, the use of lupine green manure instead of fallowing could be worth considering by practical application due to its favourable effects on soil penetration resistance. The use of lupine green manure after the production of rye cultivation resulted in penetration parameters similar to fallowing, irrespective of the green crop and the applied amount of nitrogen fertilizer, which justifies the cultivation of the crop as green manure. In the case of potato cultivating, recorded compaction within the cultivated layer is an obvious consequence of mechanical compaction during harvest; therefore, machinery operations are decisive for the development of penetration resistance values of the cultivated layer. In addition to the beneficial effect of lupine as a green manure crop on soil condition, its nitrogen-fixing ability is also important; it stresses the utilisation of the crop of sour sandy soils for the sake of proper soil management. 

  • The effect of different microbial preparations on some soil characteristics
    83-86
    Views:
    113

    In pot experiment the effect of different microbial inoculants and their combinations with NPK fertilizer and wheat straw on some soil properties (physical, chemical, and microbiological parameters) were studied. The experiment was set up in 2011 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil type was calcareous chernozem soil from Debrecen (Látókép) with ryegrass (Lolium perenne, L.) test plant.
    At the end of the experiment in our laboratory the nitrate-nitrogen content of soil, the AL-soluble phosphorus and potassium content of soil, the urease enzyme activity of soil, the total number of bacteria and the number of microscopical fungi were determined.
    The results of the study were the following:
    – The straw treatment and the straw + biofertilizer combinations influenced positively the nitrate content of soil.
    – The NPK fertilization and the straw+bacterial fertilizer combinations had significant positive effect on the AL-soluble phosphorus content of the soil.
    – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally.
    – The total number of bacteria was influenced by the NPK fertilization, the bacterial fertilization and the straw+bacterial fertilizer combinations significantly.
    – In case of the number of microscopic fungi caused in some cases significant changes the NPK+bacterial fertilizer and straw+bacterial fertilizer combinations.
    – The soil urease enzyme activity was increased in all cases strongly especially by the straw+bacterial preparation combinations.

  • Study of the microbiological activity in the agrocenosis from Crisurilor Plain
    73-77
    Views:
    125

    The seasonal variations of soil microorganisms depend on changes in the soil chemical properties and the microbiological processes of soil are determined in main by different cropping systems, soil management and season. Investigation of the microbiological properties of a haplic luvisol, under different cultivation conditions showed that anthropogenic factors such as fertilization and treatments with pesticides was favourable for certain microorganisms while others were inhibited by these factors. In order the quantitative occurence of microorganism was aerobic mesophilic heterotrophs (105–107 cellsxg-1 dry matter soil) were followed by Actinomycetes, yeast and mould (103–106 cellsxg-1 dry matter soil), nitrogen fixing bacteria (102–105 cellsxg-1 dry matter soil) and nitrifying bacteria (10-1–103 cellsxg-1 dry matter soil). The highest values of aerobic mesophilic heterotrophs were found in cropland and undisturbed meadow of haplic luvisol. Actinomycetes are more developed in undisturbed soils than in the cultivated soils. The number of yeast and mould was high in the apricot tree orchard, and Azotobacter and nitrifying bacteria were identified in a small number in all the soil variants studied. Among the total number of aerobic microorganisms, pH and humus content statistically proved relationship was established. Total number of yeast and mould depends on the proportion of 10.89% by moisture content and pH. The numerical presence of Azotobacter depends in a proportion of 9.6% by the ammonia nitrogen content and pH variations. The numerical presence of nitrifying bacteria depends in a proportion of 1.69% by the nitric nitrogen content and humus content variation.

  • Sewage sludge compost as an alternative source of phosphorus to rye in acidic sandy soil
    11-18
    Views:
    129

    Today, the use of chemical fertilisers is significantly determined by their production and purchase costs, which are high. In contrast, phosphorus (P) is present in sewage sludge in a form that is easy for plants to absorb. Good quality sewage sludge compost (SSC) could contain a high quantity of P, together with other macro- and microelements and organic matter. The effect of regular SSC application on soil characteristics as well as plant parameters has been studied since 2003 in Nyíregyháza in a small plot experiment. Focusing on the P in the soil-plant system, our hypothesis was that SSC covers plants’ P demand through enhancing soil P content and its plant availability in the acidic sandy soil. The effect of the SSC was examined at the doses of 0, 9, 18, and 27 t ha-1 on rye as a test crop. Some soil chemical parameters (pH, soil organic matter - SOM, ammonium lactate (AL) extractable P2O5), and the relationship between plant development (green weight, shoot length), physiological parameters (SPAD index), plant shoot P content, and soil available P content were studied. The obtained data indicated that the SOM content, pH, and available P content of the treated plots increased as a result of the long-term applied SSC compared to the control. Measurement of the relative chlorophyll content showed a strong correlation with the available P content of the soil, but surprisingly less correlation with shoot P content was found. The results of plant biomass and soil P content proved that SSC could be used as a low-cost and good source of P for plants.

  • Soil – Environment – Sustainability
    331-337
    Views:
    197

    The future and life quality of human society depends primarily on the success of the sustainable use of natural resources: the geological strata–soil–water–biota–near surface atmosphere continuum. Soil is the most significant conditionally renewable natural resource in our Earth’s system, with three unique properties: multifunctionality; fertility/ productivity; resilience. In the case of rational land use and precise soil management soil does not disappear, and its desirable „quality” does not decrease considerably, irreversibly and unavoidably. Its renewal, however, requires continuous care and permanent activities.
    Consequently, the prevention, elimination or moderation of soil degradation processes and extreme hydrological situations (the two main factors limiting desirable soil multifunctionality) with rational land use and soil management are the key factors and priority tasks of sustainable development on each level and in each phase of the decisionmaking process.

  • The effect of different bacterial fertilizers on the AL-soluble P2O5 content of soil, and the biomass of the rye-grass (Lolium perenne, L)
    93-98
    Views:
    218

    In pot experiment the effect of different bacterial fertilizers on some soil properties, and the amount of plant biomass were studied. The
    experiment was set up in 2010 at the Department of Soil Science and Agricultural Chemistry, in a three replications in a random block design. The ryegrass (Lolium perenne, L.) was used as a test plant. The studied soil type was calcareous chernosem soil from Látókép. In our laboratory AL-soluble P2O5 content of soil, the phosphatase enzyme activityof soil, the dry weight of rye-grass, and the phosphorus content of rye-grass were determined.
    The results of the study were the following:
    – The bacterial fertilizers - by basic treatments NPK - had significant positive effect on the AL- soluble phosphorus content of the soil.
    – The soil phosphatase enzyme activity was increased in all cases strongly by the microbial preparations used, the greatest impact was the Bactofil A bacterial fertilizer.
    – The plant educed P values significantly increased by the effect of microbial products, in addition to the fund NPK. In this case, the EM-1 and Microbion UNC bacterial fertilizer were the effective.
    – In case of the rye-grass biomass none of the bacterial preparations used caused any significant changes, either alone or when used them with straw treatment.

  • Microbiological preparations affecting the soil nutrient availability and growth of ryegrass in a pot experiment
    49-53
    Views:
    152

    The effects of different bacterial fertilizers and their combinations with NPK fertilizer and wheat straw were investigated on some soil properties (chemical parameters) and on the biomass production of testplant. The applied quantities of the bacterial fertilizers were the double of the recommended dose. The experiment was set up in 2013 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. Calcareous chernozem soil; originating from Debrecen (Látókép) was used with ryegrass (Lolium perenne L.) test plant. At the end of the experiment (after 8 week) the samples of soil and plants were determined for nitrate-nitrogen, ALsoluble phosphorus and potassium content of soil, the weight of green biomass of ryegrass per pot, the dry matter and moisture content of ryegrass. Straw treatment resulted better water and available nutrient content of soil in general. Inoculation however was not improving the biomass production over the fertilizer treatment. Interrelation with the recommended dose could be further studied.

  • Evaluation some important microbiological parameters of the carbon cycle in chernozem soils profiles
    33-39
    Views:
    183

    Some chemical and microbiological properties of the carbon cycle were investigated in three chernozem soil profiles. The soil profiles originated from a long term fertilization experiment (potato) of the University of Debrecen, Látókép, Kryvyi Rig Botanic Garden (grassland) and a large-scale farm (sunflower) of Ukraine. The results of the organic C-content, total number of bacteria, microscopical fungi, cellulose decomposing bacteria, CO2-production, microbial biomass carbon and saccharase and dehydrogenase activities were compared and evaluated with the help of correlation analyses. Close correlation was found between the organic carbon content and the number of microscopical fungi,, saccharase and dehydrogenase enzymes’ activities, as well as close correlation was found between the dehydrogenase activity and microbial biomass-C and saccharase activity.

  • Relationship between the change of soil moisture content of different soil layers and maize yield
    19-25
    Views:
    186

    The development of chernozem soil water management and its relationship with maize yields was studied in a 30-years long-term field experiment with different crop-rotation systems (mono-, bi- and triculture), in three crop years with different natural precipitation: a drought (2007), a wet (2008) and a dry (2009 one. The relevant soil layer was divided to three sub-layers: (0–60 cm, 61–120 cm, 121–200 cm) in which the development of soil moisture content was investigated during the whole vegetation. From the results it can be stated that change of the water stock of the upper soil layer (0–60 cm) was the most intensive. Both the direct effect of natural precipitation and irrigation could be observed in the most obvious way in it. Yield result of maize and the highest water supply deficit values in the vegetation were compared in our work too. According to the results it was revealed that among the three studied crop rotation systems it was the monoculture, the success of production of which depends the most of water supply. The most favourable crop rotation system was the triculture from both the aspect of the yield of produced crops and the favourable soil properties too.

  • Evaluation of Soil Degradation Based on High Resolution Remote Sensing Data
    145-148
    Views:
    104

    Soil salinity is the main problem of soil degradation in the Grate Plain with cultivated area of 20% affected. Its influence is accelerated on the water managed and irrigated lands. Remote sensing can significantly contribute to detecting temporal changes of salt-related surface features. We have chosen a farm where intensive crop cultivation takes place as a test site as soil degradation can be intensive as a result of land use and irrigation. In order to evaluate soil salt content and biomass analysis, we gathered detailed data from an 100x250 m area. We analyzed the salinity property of the samples. In our research we used a TETRACAM ADC multispectral camera to take high resolution images (0,2-0,5 m) of low altitude (300-500 m). A Normalized Vegetation Index was computed from near infrared (750-950 nm) and red (620-750 nm) bands. This data was compared with the samples of investigated area. Analyzing the images, we evaluated image reliability, and the connection between the bands and the soil properties (pH, salt content). A strong correlation observed between NDVI and soil salinity (EC) makes the multispectral images suitable for construction of salinity map. A further strong correlation was determined between NDVI and yield.

  • Change of soil nitrogen content in a long term fertilization experiment
    39-44
    Views:
    159

    The most important aim of sustainable agriculture is to ensure our natural resources – such as soils – protection, which includes fertility preservation and the use of appropriate methods of cultivation.

    If we want to get accurate information about the occurred changes, way and danger of changes, we should track the resupply and effect of the mineral nutrients and the removed quantity of nutrients with the harvest.

    Nitrogen is an essential element for living organisms and it is present in the soil mainly in organic form. In general only a low percentage of the total nitrogen content can be used directly by plants in the soil. The mineral nitrogen is incorporate by plants into our bodies. This inorganic nitrogen is produced by the transformation of organic contents through mineralization processes and it gets into the soil by fertilization. This is how nitrogen turnover occurs when mineral forms become organic and organic forms become mineral.

    The objective of this publication was to introduce – through some element s of nitrogen turnover- how changing the properties of soil in a long term fertilization experiment.

    We established that the fertilization is influenced the soil pH. With the increase of fertilization levels increased the acidity of the soil, maybe it is related with the number of nitrification bacteria. The fertilization and the rotation affected to the quantity of nitrate.

  • Regulation in Hungary of the Use of Waste Water and Sewage Sludge in Agriculture
    143-149
    Views:
    141

    Regulating the use of waste water and sewage sludge in agriculture in such a way as to prevent harmful effects on soil, vegetation, animals and man.
    In European Union there is a Council Directive (86/278/EEC) on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.
    In the enlargement process of the European Union the Hungarian Government created a new rule (50/2001. (IV. 3.) Government regulation) which regulate using of waste water and sewage sludge in agriculture. This Hungarian rule is legal and reconcilable with the Council Directive.
    The Regulation lays down limit values for concentrations of heavy metals in the soil, in waste water, in sludge and for the maximum annual quantities of heavy metals which may be introduced into the soil.
    Waste water, sludge and soil on which it is used must be sampled and analysed.
    Sewage sludge must be treated for six months before being used in agriculture.
    The use of waste water and sludge prohibited on grassland, on nature reserved areas, in ecological farming, and soil in witch fruit and vegetable crops are growing, with the exception of fruit trees.
    The states soil conservation authority must keep records registering the following:
    – the quantities of waste water and sludge produced;
    – the composition and properties of sludge;
    – the type of treatment carried out;
    – the names and addresses of the recipients of the sludge and places where the sludge is to be used.
    The Government every four years must prepare a consolidated report on the use of sludge in agriculture, specifying quantities used, criteria followed and any difficulties encountered. This report must be forwarded to the Commission.
    Last but not least in the light of Member States reports, the Commission will if necessary submit appropriate proposals for increased protection of the soil and the environment.

  • Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
    121-126
    Views:
    91

    Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
    The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
    In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
    On the basis of results the following can be stated: 
    1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
    inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
    2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
    3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
    4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.

  • The effect of biopreparations in pot experiment
    45-49
    Views:
    149

    In pot experiment the effect of Amykor and Organic Green Gold bioproducts and their combinations with NPK fertilizer on some soil properties (chemical parameters) and on the biomass of testplant were studied. The experiment was set up in 2012 at the Institute of Agricultural Chemistry and Soil Science, in a three replications, in a random block design. The studied soil typein the pot experiment was humus sandy soil from Debrecen-Pallag with onion (Allium cepa) test plant. At the end of the experiment (after 4 week) in our laboratory the samples of soil and plant were determined. The nitrate-nitrogen, AL-soluble phosphorus and potassium content of soil, the weight of green onion leaves, the wet weight of bulb and root of onion and biomass of onion. The results of the study were the following: – The treatments influenced positively the nitrate-nitrogen, the AL-soluble phosphorus and potassium content of soil. – The most effective treatments were the artificial fertilization (NO3-N) and the NPK+ simple dose of Amykor (AL-P2O5 and Al-K2O). – The NPK fertilization and the NPK+OGG (sprinkle in every 10 days) combinations had significant positive effect on the weight of green onion leaves. – The biofertilization and the straw+biofertilizer combinations stimulated the AL-soluble potassium content of soil occasionally. – The OGG treatment (sprinkle in every 10 days) had significant effective impact on the wet weight of bulb and root of onion. – The biomass of onion was increased by the artificial fertilization and OGG (sprinkle in every 10 days) treatment.

  • Evaluation of striptillage and conventional tillage in maize production
    37-40
    Views:
    172

    Tillage changes soil properties and the way how the environment affects those properties. Soil properties and environment determine the rate of water movement in liquid and gaseous form into and out of soil. Based on the experimental database of the Institute of Land Utilisation, Regional Development and Technology of the University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management and the KITE PLC, various cultivation systems were examined with maize (Zea mays L.) as indicator plant in Jász-Nagykun-Szolnok county. The sample area can be found in the outskirts of Kenderes on a meadow chernozem soil. On the examined plot, strip-tillage, subsoiling and moldboard ploughing were performed, each on 4.5 ha, respectively. The purpose of the present study is to compare these cultivation systems according to the soil- and maize kernel moisture content and to the yield based on the years of 2012 and 2013.

  • Examination of soil parameters based on the evaluation of the spectroradiometric reflectance characteristics of the topsoil
    75-80
    Views:
    180

    In this article we are presenting the methodology applied to analyse and interpret the topsoil surface reflectance parameters of multiple samples collected in the Mugello valley area in northern Italy in October 2012. The main aim of the whole project was to discover geomorphological behaviour and situation of the area ino order to improve potential for correct dating of certain archaeological artefacts found in the nearby areas. One of the crucial problem researchers are facing in the area is the lack of understanding of the underlying geological and geomorphological processes that were describing and characterizing the area and that played important role not only in the current geography and landscape formation but also in the transportation of various sediments and artefacts. In this particular research the main aim is to examine the possibility of developing a quick way to assess low level properties of the soil using hand held spectrometer and rapid analysis of cross-section using in situ measurement techniques. In this work we collected over 2000 individual samples of topsoil surface reflectance properties that we organized into a spectral library. This library is then to be used to describe physical and chemical processes in the soil. To support the analysis results were compared to analysis results from different kind of assessments in the same area. Our results show a great potential of application of hand held imaging spectrometer in soil property analysis based on the top soil surface reflectance parameters.

  • The influence of fertilization on the soil characteristics of a calcareous chernozem in a long term experiment
    47-52
    Views:
    95

    In the long term fertilization experiment of the University of Debrecen, Centre for Agricultural and Applied Economic Science(CAAEC) (Debrecen Látókép), the effects of a 25-year-long fertilization were examined in terms of some chemical and microbiological properties of soil. With the growing doses of fertilizers, the available nutrient content of soil increased. At the same time the pH significantly decreased, while the hidden acidity increased. Moreover, the ratio between the soil bacteria and microscopic fungi, and the occurrence of microbes also changed. The number of sensitive physiological bacteria groups decreased dramatically. These changes indicate the reactions of living organisms; they correspond to the „resistance stage” of stress effects, but in the case of nitrifying bacteria, they reach the „exhaustion stage”.

  • The effect of different herbicide on the number and activity of living microorganisms in soil
    76-82
    Views:
    136

    Sustainable plant growth, considering the difficulties of weed elimination, cannot be effective without the application of herbicides. However, these chemicals have enormous ecological implications, including effects on the microbiological communities of soils. It is advisable to use herbicides that have minimal secondary effects on the environment and soil-living microorganisms. In contrast, herbicides with prolonged growth stimulating or inhibiting effects are not suitable, because both types have strong influences on the number and activity of bacteria, thus causing changes in the ecological equilibrium.
    Preceding small plot experiments, laboratory tests were carried out to study the effect of herbicides used in maize cultures on the number of bacteria and growth of microscopic fungi.
    Substances that were observed to have stronger influences were applied in small plot experiments set up in the experimental garden of the Department of Plant Protection of the University of Debrecen. We studied the effects of four herbicides (Acenit A88EC, Frontier 900 EC, Merlin SC and Wing EC) on the microbiological properties of the soil. These herbicides were used in different concentrations in maize culture, and we investigated the effects in different soil layers.
    In the laboratory experiments, we determined the total number of bacteria and microscopic fungi and examined the growth of Aspergillus niger, Trichoderma sp. and Fusarium oxysporum on peptone-glucose agar containing herbicides.
    During the small plot experiments, soil samples were collected 3 times a year from 2-20 cm depth. The total numbers of bacteria and microscopic fungi were determined by plate dilution method, while the method of most probable number (Pochon method) was used to determine the numbers of nitrifying bacteria and cellulose decomposing bacteria. To evaluate the microbiological activity of the soil samples we measured carbon-dioxide release (after 10 days incubation), nitrate production (after 14 days incubation) and the concentration of C and N in the biomass.
    We can summarize our results as follows:
    • In laboratory experiments, herbicides caused a decrease in the number of bacteria and inhibited the growth of microscopic fungi.
    • Frontier 900 EC and Acenit A 880 EC had the strongest inhibiting effect on microorganisms.
    • In small plot experiments, herbicide treatment decreased the total number of bacteria and microscopic fungi.
    • Herbicides caused a significant increase in the number of nitrifying and cellulose decomposing bacteria.
    • Different herbicides containing the same active compound had similar influences on soil microoorganisms.
    • A significant increase was observed in the physiological processes of tolerant microorganisms surviving the effects of herbicides

  • Preface
    5
    Views:
    40

    In the frame of a common “Hungarian-Ukrainian Intergovernmental S&T Cooperation Programme” which title is “Change of soils ecological characteristics of Ukraine and Hungary in the conditions of anthropogenic transformed ecosystems and optimization of biological processes of plants primary feeds elements mobilization” a Workshop was held in Debrecen. The member institutes of project participated with different presentation in this program.
    The title of Workshop was: “Anthropogenic effect on the properties of Middle and Eastern European chernozem soils and on the sustainable agricultural production”.
    The aim of the Workshop was to give relevant information about the present situation of the Middle and Eastern European Chernozem soils, especially emphasize the effect of different loading on the quality (properties) of chernozem soils. With the Workshop we would like to create a tradition for discussion about the anthropogenic effect on the soil properties and through it on the productivity of different soils. It was a forum for discussion of research results related to problems and possibilities for prevention of soil quality. With this possibility we would like to contribute to the sustainable agricultural production.
    The papers were read for the publisher and we would like to show them in a separate supplement of Journal of Agricultural Sciences, Acta Agraria Debreceniensis as one of the results of the project.
    The papers comply with the requirements of the scientific issue except those two which show the university and the department of the Ukrainian partner taking part in this project.
    The participant Institutes of the project:
    - Dnepropetrovsk National University, Faculty of Biology and Ecology;
    - Kryvyi Rig Botanical Garden NAS of Ukraine, Plant Physiology & Soil Biology Department;
    - Department of Agrochemistry and Soil Sciences of Centre for Agricultural and Applied Economics;
    - Research Institute of Karcag, Centre for Agricultural and Applied Economics. The collaboration with Ukrainian partners was successful and we have confidence in the further cooperation in scientific research.

  • Establishing regional cultivating districts on the basis of the Kreybig practical soil mapping system
    20-25
    Views:
    116

    With the help of this report evaluating the current situation of the region, characteristics of the development in agricultural production and regional differences can be clarified. By mapping out the regional soil, land use and climatic conditions and organizing these into a geographical information system, one can easily determine which plants are the most ideal to cultivate in that particular region. Moreover, it is a useful tool that enables us to
    establish the most favorable land use structure suited to ecological demands and also helps to determine the methods of soil protection.
    During our work, we chose administrative units in Szabolcs-Szatmár-Bereg County, based on the latest aspects of regional cultivation.
    Our pilot areas are: the small regions of Nyíregyháza, Nyírbátor, Nagykálló, Mátészalka and Csenger.
    Using the database, we separated and uncovered the soil conditions of the pilot areas: the chemical and physical properties of the soil layer which is exploited by the roots of the plants, the humus content, the nutrient supply, the thickness of the cultivated layer and the water management conditions.
    We separated the districts of regional cultivation, where the basic elements of the traditional Kreybig color systems were applied (light yellow, dark yellow, light brown, dark green, blue, pink, red, gray, greenish brown, reddish purple, light purple, dark purple, light green).
    By using the data collected from the pilot areas, we compiled a map database, which is suitable to illustrate the plant cultivating characteristics of the region. We made recommendations to determine the most favorable plants to cultivate in the specific region with the given meteorological and soil conditions, as well as for the shifting of crops.
    Our recommendations were also illustrated in a map with a resolution of 1:25000.