Search
Search Results
-
Examination of compost maturity using reflectance
29-34Views:209Composting is one of the most popular recycling processes for organic waste. Composting plays an important role in waste and by-product management and is becoming increasingly important in both sustainable energy management and circular economy. Composting transforms organic matter to produce a safe and stable by-product (compost) that can be applied to arable land in a similar way to fertilizer. Physical, chemical and biological methods can be used to monitor the process and to determine the maturity of the compost, as spectrometric/spectroscopic methods play an important role in the analysis of different environmental samples.
Our aim was to (1) non-destructively detect the effects of different additive ratios on the spectral properties of the composting process and the spectral data of different compost mixtures, (2) to find the wavelength ranges of the reflectance curve (inflection points) sensitive to compost maturity, (3) to determine the correlation between the inflection points and the chemical and physical parameters measured in compost by conventional methods.
The mixture of broiler and hen manure and zeolite was composted 62 days in windrow composting. In the composting experiment, the moisture content and temperature (°C) were measured every three days and compost samples were taken and in 10% destillated aquaeous suspension were measured the pH and electrical conductivity (mS cm-1). Compost samples dried to mass stability were spectrally analyzed in the wavelength range 400–1000 nm with AvaSpec 2048 spectrometer.
Based on the results, the reflectance of mature compost were smaller in the last days of composting than the reflectance values of day 0 samples, thus compost maturity can be detected spectral in the VIS-NIR wavelength range. For the tested compost prisms, the reflectance of each sampling day shows a constant slope, with a significant overlap of the reflectance curves up to 400–700 nm wavelength range, and there was a breakpoint in the 700–750 nm wavelength range which was proved by binary encoding.
-
Role of living bacteria and other amendment in early development of maize
53-56Views:126Different bacteria and wood ash, as a possible micro-nutrient, and liming material, was examined in our experiment on the early growth of corn seedlings.
The development of renewing energy resources includes the use of energy grasses and energy forests. The intensive land use in forestry and in agriculture may cause the acidification of soils due to the harvest, or leaching of cations. To maintain the sustainability of soils necessary to maintain it’s the buffer capacity, and pH. Beside the lime the wood ash can is one of the most effective sources to provide the sustainability of intensive land use. The soil born micro organisms play a significant role in the maintenance of soil quality. The bio fertilizer, that contains soil originated bacteria (Azotobacter, and Bacillus sp.), was used in the experiments. The plants release several organic acids by their roots lowering the soil pH, and make more available the sparingly soluble minerals. The amounts of released organic matter depend on stress intensity, as the high pH is. The soil life has a significant role to keep the soil conditions on sustainable level, since there are several similarities in nutrient uptake mechanism between the bacteria and higher plants. Advantageous effects of bio-fertilizer were observed in our experiments.
We came to the conclusion that the use of wood ash is recommended instead of lime for the improvement of acidic soils, on the evidence of its pH increasing effect. The wood ash contains several micronutrients in an optimum composition for forestry and agricultural plants. The solubility of heavy metals is very low; therefore there is no risk to use the wood ash in the agriculture and in the horticulture by our experiments. The retardation of growth at higher ash doses can be explained by the modification effect to the soil pH, as far as the original soil pH was pH 6.8, and when ash was given to the soil, the pH increases to 7.8 pH, that is unfavourable for the uptake of most nutrients.
-
CO2 emission of the soil on barley stubble
95-102Views:143In the last decades the physical and biological status of the soils in Hungary significantly decreased. The degree and intensity of CO2-production of the soil is in close correlation to its structural status and organic matter content. In a complex soil tillage experiment at Karcag in situ measurements have been carried out since 2002 in order to determine the CO2-emission of the soil. Carbon-dioxide emission of the soil in the cases of conventional tillage and reduced cultivation system was analysed in a long-term cultivation experiment. The measurements were carried out after the harvest of the barley, thus root respiration was excluded. For the spatial delimitation of the measuring area a newly developed frame+bowl set was used. Based on measurements, significant differences between cultivation systems can be recognized due to the soil structure changes and its effects
-
Alternatives of sewage sludge use in the crop production
83-87Views:118The produced plants reduce the greenhouse effect because they fix CO2 that contributes to the causing of the greenhouse effect with about 50%. The production of fertilizers is not only a costly process but it needs a considerable energy at the same time. Nowadays, the reduction of the proportion of the fertilizer is significant. One of the reasons of this is that during the production such by-products are produced in a big quantity in which the necessary vegetal nutrients can be found in a considerable measure these enrich the organic matter of soil. The latter is essential condition for the microorganisms in the soil, without which the sustainable plant cultivation can not be achieved. Besides high prices of artificial fertilizers the utilization of the wastes is economically justified. Finally the other reason for the reduction of a usage of artificial fertilizer is that the wrong use of the fertilizer may cause environmental pollutions. I examined the cultivation application of the sewage sludge in laboratory circumstances during my work.
-
The effect of various composts on vegetable green mass on two soil types
179-183Views:180Composting of sewage sludges makes easier the utilization of sewage sludge in the agriculture and the composts in good quality could increase the nutrient content of soil. Due to the composting process, the sewage sludge composts with high organic matter content can be utilized in the same way as other composts or farmyard manure.
Composts produced in different ways have different effects on the physical, chemical and biological properties of different soils, although their positive effects have already proved in the literature. In our study the effects of composts from different composting processes were investigated in soil-plant systems. The different physical and chemical properties of the two examined soil types (arenosol and chernozem)strongly influenced the nutrient supply capacity of composts which could be characterized by the growth of ray-grass as a test plant in the pot experiment. In this work we examined the effects of three different composts on the green weight of plants on the fourth and eighth weeks after the treatment and sowing. -
Saccharomyces cerevisiae growth kinetics study dairy byproduct
169-172Views:243By guess, annual volume of milk whey is 185–190 million tons and this volume probably will increase next years. Whey has significant biochemical oxygen demand due to its high organic matter content so whey as sewage is one of the most pollutant by-products in the food industry. Apart from environmental pollution, benefit of several whey constituents for human health is another reason to utilize whey. Corn and potato, as well as the processing of milk in the food industry in large quantities of by-products generated by low cost, substantial quantities of starch and lactic acid, which are due to high biological oxygen demand are considered as hazardous waste. Some of them are destroyed sewage storage tanks, and those products are excellent substrates for the growth of microorganisms could be. The traditional nutrient solution optimization methods are solution and time-consuming and are not able to determine the real optimum because of the interaction of factors involved.
-
Physiological examination of some industrial wastes under laboratory conditions
241-246Views:235I would like to draw the attention to the different side-products and wastes that contain lots of organic matter, micro and macro elements, and the fact that they do not have any harmful effect. These materials can be used as micronutrient fertilizers, therefore quantity of the produced CO2 and other greenhouse gases will decrease. Compost, sewage sludge and lime sludge were used in our experiments. The usability of these materials in crop production was examined in crop production within laboratory conditions.
-
Assessing of soil aggregate stability: the sand-correction and its relevance
29-47Views:128Soil structure and changes in its quality caused by Maize stem (1), Wheat straw (2) and Maize stem & wheat straw (3) addition were assessed by three aggregate-stability indices. We observed that the NSI index formula proposed by Six et al. (2000) was nonsensitive to the changes in soil structure caused by the investigated organic matter addition. Furthermore it overestimates the aggregate-stability of the investigated silty sandy loam soil. Therefore we proposed a new modified NSI formula which is sensitive to the questionable treatments and that resulted in a more
realistic NSI data. The most sensitive index to differences of the investigated treatments were the Mean weight diameter (MWD) proposed by van Bavel (1953, in Kemper és Rosneau, 1986). -
Different soil fertility conditions depending on different land use methods
169-172Views:101In precision nutrient management the most important aspect is adaptation but we should consider the possibility of the long-term improvement of soil fertility within the less fertile landscape zones. This possibility can be evaluated principally by long-term field experiments, which are running on similar soil types. The results of these field experiments can indicate that which soil fertility status should be attained. Some more important soil fertility data, (such as pH, P-, K- and soil organic matter (SOM) content) of a long-term field experiment with increasing farmyard manure(FYM) doses or equivalent NPK fertilizers, set up on an Eutric cambisol, are presented. The yieldincreasing capacity of FYM doses was only 82%, as compared to the equivalent amount of mineral NPK, but long-term FYM treatments resulted in 10% higher SOM content than that of equivalent NPK
fertilizer doses. The studies indicate that SOM content is a function of local climate and clay content of the soil, and neither long-term high FYM doses can increase SOM content steadily above a supposed steady-state value. However we have to make efforts to keep the optimum level. The lowest soil reactions developed both with the highest NPK doses and without any fertilization. AL-P2O5 content of soil was increased more by mineral fertilization than by FYM treatments, but in case of AL-K2O content there was no difference between the fertilization variants. However the highest doses of both fertilization variants increased soil nutrient content to an excessive degree. Wecould get very valuable data from the unfertilized control plots as well, where long-term yield data suppose 48 kg ha-1 year-1 air-borne N-input. -
The possibility of use of the 0,01 M CaCl2 and Baker- Amacher extractants for the determination of plantavailable potassium
7-15Views:87The Hungarian fertilizing recommendation systems use AL soil test for the evaluation of potassium supply. The 0.01 M CaCl2 is a definitely milder extractant, it extracts the easily soluble and exchangeable potassium amount. Its European introduction was already taken into consideration in 1994. The research project on this topic is started in several european countries, also in Hungary at the Department of Agricultural Chemisty of Agricultural University of Debrecen. Another advantage this multielement method is that the different element-ratios can also be calculated.
The Baker-Amacher extractant’s principle is that it contains a known amount of K, P, Mg in the CaCl2 solution. During the soil extraction adsorption and desorption process take place, so the adsorption or desorption can be calculated from the original and the final concentrations.
In this paper we introduce the results of comparing analysis of the samples (n=630) from Soil Information and Monitoring System. Our aim was to measure the use of new extractants beside conventional extractant (AL) for the evaluation of K-supply would be reasonable.
It can be stated that there is a medium close relationship (r=0.75) between AL-K and 0.01 M CaCl2-K. My calculations confirmed the results of former examinations, and proved that the two extractants don’t extract and change the same rate of K-fractions. We found that regression between 0.01 M CaCl2 and AL depend on texture classes, pH classes, amount of lime, and organic matter content of soils.
Comparing the relations between AL and Baker-Amacher we find relatively loose correlation (r=0.45). We stated that there are K-fixing soils among soils considered to be well supplied with potassium by AL. This might be caused by the high amount of mineral clay and the quality of mineral clay. We stated that the dK averages show that the Hungarian nutrient-supply categories characterize generally well K-supplement of soil.
It can be stated that it would be necessary to use new extractants to specify evaluation of plant available K. We found that the 0.01 M CaCl2 and Baker-Amacher extractants could complete usefully the AL procedure and could help effective potassium fertilization.