Search

Published After
Published Before

Search Results

  • Sewage sludge compost as an alternative source of phosphorus to rye in acidic sandy soil
    11-18
    Views:
    131

    Today, the use of chemical fertilisers is significantly determined by their production and purchase costs, which are high. In contrast, phosphorus (P) is present in sewage sludge in a form that is easy for plants to absorb. Good quality sewage sludge compost (SSC) could contain a high quantity of P, together with other macro- and microelements and organic matter. The effect of regular SSC application on soil characteristics as well as plant parameters has been studied since 2003 in Nyíregyháza in a small plot experiment. Focusing on the P in the soil-plant system, our hypothesis was that SSC covers plants’ P demand through enhancing soil P content and its plant availability in the acidic sandy soil. The effect of the SSC was examined at the doses of 0, 9, 18, and 27 t ha-1 on rye as a test crop. Some soil chemical parameters (pH, soil organic matter - SOM, ammonium lactate (AL) extractable P2O5), and the relationship between plant development (green weight, shoot length), physiological parameters (SPAD index), plant shoot P content, and soil available P content were studied. The obtained data indicated that the SOM content, pH, and available P content of the treated plots increased as a result of the long-term applied SSC compared to the control. Measurement of the relative chlorophyll content showed a strong correlation with the available P content of the soil, but surprisingly less correlation with shoot P content was found. The results of plant biomass and soil P content proved that SSC could be used as a low-cost and good source of P for plants.

  • Soil Biological Activity within Integrated and Ecological Management of Soil
    47-52
    Views:
    88

    The effects of the integrated (IS) and ecological (ES) management of soil on chosen parameters of soil biological activity were investigated in the period 1999-2000. The following characteristics were determined: biomass of microorganisms (Cmic), dehydrogenase activity (DHA), an amount of potentially mineralizable nitrogen (Nbiol), and nitrification intensity. Soil samples were collected from a stationary field experiment established in 1990 on gley brown soil at the Experimental Station of Slovak Agricultural University, Nitra. For each field with a different crop rotations two fertilization treatments were selected: (a) no fertilization and (b) use of manure for silage maize and, within IS, also mineral fertilizers. There was a statistically significant difference at α = 0.05 in the amount of biologically released nitrogen (Nbiol) between both systems and in the nitrification intensity in favour of ES. A higher amount of microbial biomass (Cmic) was noted for ES but without statistical significance. Cultivated crops and the timing of soil sampling were found to have the greatest effect on all the parameters observed in individual experimental years and within the two systems of soil management.

  • Energy forests or vineyards?
    237-240
    Views:
    81

    This paper primarily aims at giving an introduction to an alternative opportunity for vineyards owners many of whom have come to a
    decision about elimination of their vineyards. The paper is focusing on the Mátra wine-region as a study area, which is the largest mountain
    wine region in Hungary where more than one third of supported clearing of vineyards have been implemented in the last few years. The
    abandoning of vineyards is explicable in more than one way such as very small average size of land or the increasing mean age of owners
    etc. The fundamental reason is the chronic doubtfulness of the grape and wine market and the low level of overall profitability of production.
    Grape production has a long tradition in this region, thus the disappearance of vineyards caused serious problems in land use through the
    absolute lack of plans for the future. The popularity of biomass production in the press and the biofuel resultant from vine stocks raise
    interest for short rotation forestry within a group of farmers. Short rotation forestry offers a new chance for some farmers to cut oneself adrift
    from the harmful effects of the market of agricultural products.

  • Survey on energetic short rotation forestry systems – Possibilities of spatial development and job creation
    7-11
    Views:
    89

    Both the European and the Hungarian rural areas suffer multi dimensional problems. Beside infrastructural under development the most important difficulty is employment. Unemployment is significant in the rural areas, while other structural characteristics like education, profession, work circumstances and seasonality worsen this unfavourable situation. It can be stated that the challenge with the highest priority in rural and spatial
    development is to create jobs and to strengthen local employment. The authors examine the job generating possibilities of energetic biomass of agricultural origin in a structural point of view. The aim is to develop spatial biomass product line models that permanently support the raise of employment by utilizing the possibilities of the European Union support policy and the popularity of this branch.

  • Plant production possibilities on a heavy metal contaminated soil with the purpose of biorefinery
    215-222
    Views:
    126

    Significant part of not cultivated area of Hungary is not suitable for agricultural utilization because of industrial
    pollution. Technologies of biorefinery make reutilization of contaminated areas possible. Biomass of plants
    produced on polluted soils can be raw material of valuable products. Applicability of biorefinery was tested on a
    heavy metal polluted soil, where the contamination originated from previous mining activity. Complete biomass
    utilization was aimed to obtain cosmetic ingredients, pharmaceutical agents, and precursors. During our research
    work 88 plant species and varieties were produced and tested for potential utilizable components. Levels of
    possible contaminants in these plants were monitored, and amounts of carbohydrates, protein, organic acid and
    cellulose were determined as well. Different plant extracts were tested as potential sources of biologically effective
    components or as raw materials for lactic acid fermentation. Our results show that biorefinery is a real possibility
    for utilization of polluted areas. Numerous plants could be cultivated on contaminated areas without increased
    levels of contaminants in their tissues, thus they can be sources of valuable compounds.

  • Regional interactions of bioenergy utilization
    159-162
    Views:
    72

    The backwardness of the rural areas compared to the cities poses a problem all over Europe. In Hungary, a relatively small size of the population lives in the capital, more than 80% of Hungarians live in rural cities or villages. The tension between the countryside and the cities is rather intensified and the symbiotic correlation would need to be restored. Many people migrate from the countryside, especially young adults, as they have no opportunities to find a job in their hometowns. This phenomenon poses big risks because getting a job is usually difficult everywhere and because fitting into a new environment always involves a lot of difficulties.

    Non-renewable energies are restricted and they will not be accessible after reaching a certain limit. People’s everyday activities and the functioning of the economy presuppose the availability of the necessary amount of energy. In the future, a solution that provides the longterm stability of energy for the world will become increasingly necessary. There is a huge potential in bioenergy, more specifically in biomass. The building of biomass plants and putting them into operation creates jobs in the rural spatial environments: a locally available resource that can help in creating the energy safety of the country and the reduction of the dependence on import. The production of energy crops or the crops whose purpose of use is energy could help in strengthening the multifunctional character of agriculture and it can represent a source of income for those living off agriculture under the current uncertain conditions.

  • Effects of some herbicides on the microbiological characteristics of soil nitrogen cycle under maize plantation
    93-100
    Views:
    89

    Nitrogen is a key element for the living organisms and influence not only for the quantity but for the quality of the yield, considerable. Availability of nitrogen from the soil is influenced by several microbiological processes of the Nitrogen-cycle. Among the intensive agricultural production the herbicide application cannot be omitted more information needs therefore about the inhibitor effect of herbicides on the different microorganisms.
    An experiment was set up on calcareous chernozem soil under maize culture. Effect of four different herbicides (Acenit, Frontier, Merlin, and Wing) was investigated. The effect of herbicides was measured to four microbiological parameters of the Nitrogencycle (abundance of nitrifying bacteria, nitrate solubilisation, biomass nitrogen and urease enzyme activity). There were singledouble-  and five times of recommended doses of herbicides applied for two onsecutive vegetation periods.
    From the results of the different doses of herbicides, the following can be stated:
    – The Acenit has a stimulating effect on nitrifying bacteria in general. The Frontier and Merlin also influenced the quantity of nitrifyers, however in certain cases decreased in another cases increased the number of bacteria.
    – The double doses and five times doses of herbicides was found to be increasing the nitrate content of soil, -especially in 2006.
    – The quantity of microbial biomass nitrogen increased in the 60% of treatments and decreased in the 40% of the treatments.
    – Except of the result of Wing in 2006 and Merlin in 2005, the effect of simple dose herbicides was the smallest on the urease enzyme activity. According to the results the effect of Merlin was positive; the effect of Wing was negative on the soil enzyme’s activity.
    Regarding the application of four different herbicides in three  different doses on the microbiological parameters of soil (at two consecutive years-) in 39% of the treatments has resulted a significant inhibitory effect, 28% of the treatments, however have significant stimulating effect on the parameters measured. More than 50% of the inhibitory effect was measured in case of the Wing, at more than 50% of the Frontier the microbiological parameters have not changed.

  • Deproteinized plant juice as part of circular economy: A short review and brief experimental data
    23-26
    Views:
    1538

    As the population of the Earth is constantly growing it generates an unmet demand for protein, which is an urgent problem. The protein extraction process is a potential solution, which offers high-quality plant protein suitable for animal and human nutrition at a favorable price. The process used within our project produces green juice from the green alfalfa biomass through pressing. After the coagulation of protein from this green juice, the by-product is called DPJ (Deproteinized Plant Juices) or brown juice. Our preliminary results match the international literature, namely that brown juice take up as much as 50% of the fresh biomass in weight. To utilize this by-product is a crucial part of the process to make it environmental-friendly and financially viable as well. The examined brown juice samples came from a small-scale experiment of alfalfa varieties carried out in the experimental farm at the University of Debrecen. According to our preliminary results, brown juice has high macro- and micronutrient values, furthermore, it has a potentially high amount of antioxidant compounds. The study highlights that brown juice is suitable as an ingredient in microbiological media, in plant nutrition as a supplementary solution, for feedstock and for preparing human food supplements or functional foods. The potential utilization of all biorefinery products makes it a very appropriate technology for today’s challenges.

  • Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
    35-39
    Views:
    101

    Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
    application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree. 

  • The use of renewable resources is an opportunity and an obligation
    13-17
    Views:
    115

    The renewable energy sources could be used in energy production, while no or only very slightly emit harmful substances to the environment. The solar, wind, hydropower, biomass and heat rational utilization of land contributes to greenhouse gas emissions.
    Renewable energy sources also reduces the dependence on fossil fuels, thus contributing to increase security of supply. The creation of local jobs to strengthen the area's population retaining ability.

  • Comparison of the technological background of aquaponic systems
    47-52
    Views:
    325

    Aquaponics is the combined culture of fish and plants in recirculating aquaculture systems, an ecologically sustainable horticultural production technique with long traditions.

    The objective of this study is to compare flood-and- drain, and the water crossflow system and examine the differences in the water quality, fish yield and plant growth parameters for Common carp (Cyprinus carpio) and basil (Ocimum basilicum). During the study, water quality parameters of two treatments were compared in temperatures, pH, EC and NON were significantly different (p <0.05). Leaf area of the basil plants grew to an average of 20.37 cm2 (± 9.02 cm2). The plants’ biomass production was significantly different (p< 0.05) in the two systems. The biomass production showed lower yield, 458.22 g (± 214.59 g) in the constant flow system that in the flood- and- drain system 692.9 g (± 175.82 g). Fish Growth parameters were better in constant flow system (FCR 5.48 g/g ± 0.19). However, the specific growth rate (SGR) demonstrated that fish grew faster in flood- and- drain system 1.38 %/day (± 0.29).

  • Spatial environment analisys of the bioenergy production and utilization
    235-240
    Views:
    108

    The backwardness of the rural areas compared to the cities poses a problem all over Europe. Rural development and the reduction of differences between the development levels of the regions have expressed roles among the programs of the European Union. Member States are even entitled to subsidisation, they just need to manage subsidies economically. In Hungary, a relatively small amount of the population lives in the capital, more than 80% of Hungarians live in rural cities or villages. The opposition between the countryside and the cities is rather intensified and the symbiotic correlation would need to be restored. Many people migrate from the countryside, especially youngsters, as they have no opportunities to find any job. This phenomenon poses big risks because getting a job is usually difficult everywhere and because fitting into a new environment always involves a lot of difficulties. Also from the aspect of the national economy, migration from the rural areas to the cities is a problem. The state budget will face significant excess costs if someone moves from a village to the city. It could cause unpredictable consequences if people leave the villages, as the maintenance and development of the village living space will face a hopeless situation.
    Non-renewable energies are restricted and they will not be accessible after reaching a certain limit. People’s everyday activities and the functioning of the economy presupposes the availabilty of the necessary amount of energy. In the future, solution that provide the longterm stability of energy for the world will become increasingly necessary. There is a huge potential in bioenergy, more specifically in biomass. The building of biomass plants and putting them into operation creates jobs in the rural spatial environments. A locally available resource that can help in creating the energy safety of the country and the reduction of the dependence on import. The production of energy crops or the crops whose purpose of use is energy could help in strengthening the multifunctional character of agriculture and it can represent a source of income for those living off of agriculture under the current uncertain conditions.

  • Development opportunities of biomass-based ethanol production in relation to starch- and cellulosebased bioethanol production
    71-75
    Views:
    161

    The biomass is such a row material that is available in large quantities and it can be utilizied by the biotechnology in the future. Nowadays the technology which can process ligno cellulose and break down into fermentable sugars is being researched. One possible field of use of biomass is the liquid fuel production such as ethanol production. Based on the literary life cycle analysis, I compared the starch-based (first generation) to cellulose-based (second generation) bioethanol production in my study considering into account various environmental factors (land use, raw material production, energy balance). After my examination I came to the conclusion that the use of bioethanol, independent of its production technology, is favorable from environmental point of view but the application of second generation bioethanol has greater environmentally benefits.

  • Changes in weed flora of basket willow (Salix viminalis L.) under different soil nutrient supply
    116-120
    Views:
    155

    The world is in a continuous progress, as a result of which energy consumption and with this the release of gases with adverse impact show rapid increase. As a result of the survey conducted by the International Energy Agency, if the major economic powers do not initiate a change in their energy policy, the increase of energy consumption may as well reach 40 % by 2030. This increased energy demand is getting more and more difficult to fulfill with the fossil energy resources, which is to lead to an increasing significance of renewable energy resources. In Hungary, these energy resources are the best to provide with biomass growth. Biomass growth for energetic purpose can mostly be provided by energy plants, out of which “energy willow” (Salix viminalis L.) is outstanding with its high yield and with its excellent burning technology characteristics of its timber. The willow’s cropping technology is being established in our country. One of our tasks is to work out an adequate weed control plan. The professional and safe use of herbicides can increase the success of production. In our paper, we discuss the weed flora data collected on  treatments applied in the different fertilizer and compost. We started our survey in 2010. We examined twelve different fertilizer and compost treated areas. The dominant weeds were: Amaranthus retroflexus, Chenopodium album, Echinochloa crus-galli among annuals; Cirsium arvense and Agropyron repens among the perennials. 

  • Changes of relative chlorophyll content at maize smut inoculated hybrids
    55-58
    Views:
    285

    The leaf chlorophyll content analysis is important for several reasons. The natural or anthropogenic stressors directly effect on the chlorophyll content. Through the measurement of the chlorophyll content it is possible to obtain data concerning the physiological status of the plant, moreover the chlorophyll content is closely related to the nitrogen content, so it is linked to photosynthesis and the photosynthetic activity which determine biomass production.
    One of the most common symptoms of plant diseases is the larger and smaller interveinal chlorotic areas. These might be local, or expand to the whole plant. There are multiply reasons of chlorosis such as reduction of chlorophyll content, unfavorable effects on the chlorophyll content,disorders regarding function of chloroplasts or ultimately destruction of the chloroplasts. Although such a chlorotic deviancy can contribute to significant losses in photosynthesis; however the underperformance photosynthesis of the sick plants is a more complex process.
    As we unambiguously experienced during our investigations on common smut that the infected maize plants most common accompanying symptom was chlorosis on the leaves, so it is especially important to examine how the infection influenced on the chlorophyll content of different hybrids.

  • Tools of promoting „energy-crops”
    47-52
    Views:
    80

    The utilisation of renewable energy sources have come to front with the decreasing fossil fuel stocks, the unsolved problems and fears of nuclear energy and so the cumulating energy dependence. In Hungary the potential of biomass is the largest in renewable energy sources.
    During our examinations, we analysed the promotion of producing energy crops in Szabolcs-Szatmár-Bereg county. With the examination of the territories involved in energy crop subsidies it can be stated that the energy crop subsidy had its promoting role only on those areas where because of the bad soil conditions the energy crop producing is more profitable than other alternative (non energy) crops.
    The expected growth rate of energy plantations will be low, according to the low rate of subsidy intensity (40-60%). The uncertainty of direct area payments decreases the calculability that cuts back the favour of investment in short rotation forestry planting.

  • Preliminary results on Siberian sterlet (Acipenser ruthenus marsiglii) fries rearing under intensive conditions
    27-31
    Views:
    135

    In our experiments production performances of Siberian sterlet were tested under intensive tank conditions. During the 25 days long experiment effectiveness of weaning to artificial diet of the fish was investigated. Production performances of fish fed on exclusively dry diet from the beginnings were lower than the other two groups. Between the values of sterlets fed on live food also then suddenly vs. continuously were weaned to dry diet there were no significant differences. Based on our results live food feeding could be suggested for the Siberian sterlet larvae for some days but the method of the weaning to dry diet has no significant influence to the production performances.

    In 21 days long experiment four different feeding frequencies were tested in Siberian sterlet (~13 g) fingerlings. Dry feed was offered for the fish continuously, 2, 3 and 4 times per day. There were no significant differences between the values of the four treatments. Based on our results there is no high influence of feeding frequency in case of this size group of Siberian sterlet.

    During the nursing in two different size groups of Siberian sterlet the optimal daily amounts of feed were aimed to determine. In case of growth values of the group fed at 7% of the total biomass were higher than the other two groups (3 and 5%). Feeding performances of fish fed at 5% were significantly better than fish fed at 7%. Based on our results for ~20 g size of the subspecies at least 5% of total body weight could be suggested.

    In case of ~150 g size of the fish the production performances of fish fed at 1% were lower than the other two groups (2 and 3%). Between the values of stocks fed at 2 and 3% there were no significant differences. Based on these results 2% of total body weight of dry feed could be suggested for the Siberian sterlet with ~150 g body weight.

  • Sensitivity study on Virginia fanpetals (Sida hermaphrodita (L.) RUSBY) cv PETEMI to different herbicide agents
    89-92
    Views:
    86

    The cultivation of Virginia fanpetals (Sida hermaphrodita (L.) Rusby) is a relatively new phenomenon in Europe. On the basis of the biology of the plant and the practical work implemented, it has been stated that the traditional field practice does not provide the appropriate conditions of biomass production for energetic purpose. The development of the proper weed control is inevitable for the healthy stand, as in the early phenophases the plant is growing slowly and it is exposed to weeds. 
    Our objective was to test some herbicide agents as no previous relevant data had been published.

  • The Presentation of Debrecen University’s Solar Energy Power Plant
    259-263
    Views:
    97

    Energy plays an important role in everyday life and in the economy. The use of fossil energy sources greatly damages the environment. Besides this, the quantity of these energy sources is limited. Therefore, it is important to increase the share of renewable energy sources (solar, wind, water, biomass) in energy generation. Huge amounts of energy (1150-1300 kWh/m2) arrive at the earth from the sun, which utilized in passive and active ways. One of the active applications is photovoltaic current production, in the course of which electricity is produced directly with PV-Panels. This can be fed into the grid.

  • Investigation of the decomposition and leaching dynamics of Salix, Populus and mixed leaves in the area of Lake Balaton and Kis-Balaton Wetland
    119-124
    Views:
    207

    In lakes and wetlands, leaf litter input from the coastal vegetation represents a major nutrient load and plays a basic structural and functional role in several ecosystems. In Hungary, at the banks of lakes and wetlands, Salix and Populus trees are the most common species. In an experiment in Lake Balaton and Kis-Balaton Wetland between 16 November 2017 to and 3 June 2018, the decomposition rates and leaching dynamics of Salix, Populus and mixed leaves (50% Salix and 50% Populus) were investigated. Total nitrogen and phosphorus content of biomass samples were measured at the beginning and end of the experiment for the leaching dynamics experiment. We found that litter mass losses (Salix, Populus and mixed leaves) were not significantly different between the two mesh size litterbags and between Lake Balaton and Kis-Balaton Wetland. Different amounts of the total nitrogen and phosphorus leaching from Salix, Populus and mixed leaves were detected. The total nitrogen contents of the plant samples were around 8-18% at the end of the investigated period. Slightly higher values were measured compared to phosphorous (27-29%).

  • Hungary’s correspondence with the EU regulations regarding liquid bio fuels
    119-128
    Views:
    88

    During the recent years researchers from different countries have found that our environment is at risk. It has been recognised by the leaders of the member countries and they have made decisions together concerning environmental protection in several agreements, contracts. Unfortunately, these decisions have been weakened and adumbrated on numerous occasions by certain interests.
    However, the energetic exploitation of the biomass has been supported by the economic and social changes of the previous years, more specifically, that of the bio fuels. The significant increase in the price of the traditional energy sources, the import dependency of the countries, the foreseeable exhaustion of the resources, the changes occurred due to joining the EU are all such problems that facilitates the application of bio fuels, as a good solution.
    Our country decided to modify the then existed bio fuel component rate of 2% to 5.75% which has to be achieved by 2010. Since then, in March 2007 it has been expanded to 10% until 2020 (concerning energy content). This decision was taken knowing that this year (2006) the bio fuel rate has been 0.5%. However, the rate of 2% has not been achieved even in the EU. One can understand that the implementation cannot be fulfilled without significant political decisions and support. The main reason for this is that the price of bio fuels is not competitive with the present fossil-origin energy prices in Hungary. So in 2007 several regulations were modified. The most important one is perhaps the regulation of the revenue tax, which caused the successful tax-differentiation concerning bio fuels in more member states between 2007 and 2008. Its essence is that the revenue tax is not decreased, but if the fuel does not contain a bio fuel component of 4.4 bulking percentage per litre, „punishment” tax has to be paid. Moreover, on behalf of the implementation, regulations concerning bio fuels and bio fuel components are improving
    At present the production and the application of bio fuels without any support are not economical yet. That is why it is important to emphasize the support policy of our country. After joining the Union, the new members can receive some shares from the direct disbursements, but only a tan increasing rate, we can achieve the 100% in 2013, though there is an opportunity for national contribution. Energy plants produced in agriculture receive separate supplementary support which is an advantageous opportunity for the farmers of the sector. Bio fuels cannot only be supported through agriculture, of course, but by research development, investment etc.
    All in all, it can be concluded that Hungary seeks to fulfil the EU responsibilities taken and by this, to contribute to the maintenance of the sustainable progress, decrease of environmental pollution and the import dependency of energy sources.

  • Management of phytopathogens by application of green nanobiotechnology: Emerging trends and challenges
    15-22
    Views:
    325

    Nanotechnology is highly interdisciplinary and important research area in modern science. The use of nanomaterials offer major advantages due to their unique size, shape and significantly improved physical, chemical, biological and antimicrobial properties. Physicochemical and antimicrobial properties of metal nanoparticles have received much attention of researchers. There are different methods i.e. chemical, physical and biological for synthesis of nanoparticles. Chemical and physical methods have some limitations, and therefore, biological methods are needed to develop environment-friendly synthesis of nanoparticles. Moreover, biological method for the production of nanoparticles is simpler than chemical method as biological agents secrete large amount of enzymes, which reduce metals and can be responsible for the synthesis and capping on nanoparticles.

    Biological systems for nanoparticle synthesis include plants, fungi, bacteria, yeasts, and actinomycetes. Many plant species including Opuntia ficus-indica, Azardirachta indica, Lawsonia inermis, Triticum aestivum, Hydrilla verticillata, Citrus medica, Catharanthus roseus, Avena sativa, etc., bacteria, such as Bacillus subtilis, Sulfate-Reducing Bacteria, Pseudomonas stutzeri, Lactobacillus sp., Klebsiella aerogenes, Torulopsis sp., and fungi, like Fusarium spp. Aspergillus spp., Verticillium spp., Saccharomyces cerevisae MKY3, Phoma spp. etc. have been exploited for the synthesis of different nanoparticles. Among all biological systems, fungi have been found to be more efficient system for synthesis of metal nanoparticles as they are easy to grow, produce more biomass and secret many enzymes. We proposed the term myconanotechnology (myco = fungi, nanotechnology = the creation and exploitation of materials in the size range of 1–100 nm). Myconanotechnology is the interface between mycology and nanotechnology, and is an exciting new applied interdisciplinary science that may have considerable potential, partly due to the wide range and diversity of fungi.

    Nanotechnology is the promising tool to improve agricultural productivity though delivery of genes and drug molecules to target sites at cellular levels, genetic improvement, and nano-array based gene-technologies for gene expressions in plants and also use of nanoparticles-based gene transfer for breeding of varieties resistant to different pathogens and pests. The nanoparticles like copper (Cu), silver (Ag), titanium (Ti) and chitosan have shown their potential as novel antimicrobials for the management of pathogenic microorganisms affecting agricultural crops. Different experiments confirmed that fungal hyphae and conidial germination of pathogenic fungi are significantly inhibited by copper nanoparticles. The nanotechnologies can be used for the disease detection and also for its management. The progress in development of nano-herbicides, nano-fungicides and nano-pesticides will open up new avenues in the field of management of plant pathogens. The use of different nanoparticles in agriculture will increase productivity of crop. It is the necessity of time to use nanotechnology in agriculture with extensive experimental trials. However, there are challenges particularly the toxicity, which is not a big issue as compared to fungicides and pesticides.

  • Assessment of Environmental Susceptibility/Vulnerability of Soils
    62-74
    Views:
    100

    Soils represent a considerable part of the natural resources of Hungary. Consequently, rational land use and proper soil management – to guarantee normal soil functions – are important elements of sustainable (agricultural) development, having special importance both in the national economy and in environment protection.
    The main soil functions in the biosphere are as follows: conditionally renewable natural resource; reactor, transformer and integrator of the combined influences of other natural resources (solar radiation, atmosphere, surface and subsurface waters, biological resources), place of „sphere-interactions”; medium for biomass production, primary food-source of the biosphere; storage of heat, water and plant nutrients; natural filter and detoxication system, which may prevent the deeper geological formations and the subsurface waters from various pollutants; high capacity buffer medium, which may prevent or moderate the unfavourable consequences of various environmental stresses; significant gene-reservoir, an important element of biodiversity.
    Society utilizes these functions in different ways (rate, method, efficiency) throughout history, depending on the given natural conditions and socio-economic circumstances. In many cases the character of the particular functions was not properly taken into consideration during the utilization of soil resources, and the misguided management resulted in their over-exploitation, decreasing efficiency of one or more soil functions, and – over a certain limit – serious environmental deterioration.
    Soil resources are threatened by the following environmental stresses:
    – soil degradation processes;
    – extreme moisture regime;
    – nutrient stresses (deficiency or toxicity);
    – environmental pollution.
    Environmental stresses caused by natural factors or human activities represent an increasing ecological threat to the biosphere, as well as a socio-economic risk for sustainable development, including rational land use and soil management.
    The stresses are caused by the integrated impacts of various soil properties, which are the results of soil processes (mass and energy regimes, abiotic and biotic transport and transformation and their interactions) under the combined influences of soil forming factors. Consequently, the control of soil processes is a great challenge and the main task of soil science and soil management in sustainable development.
    The efficient control of these processes necessitates the following consecutive steps:
    • registration of facts and consequences (information on land and soil characteristics, land use, cropping pattern, applied agrotechnics, yields, with their spatial and temporal variability);
    • evaluation of potential reasons (definition and quantification of soil processes, analysis of influencing factors and their mechanisms);
    • assessment of the theoretical, real, rational and economic possibilities for the control of soil processes (including their risk-assessment and impact analysis);
    • elaboration of efficient technologies for the „best” control alternatives (best management practice).
    Scientifically based planning and implementation of sustainable land use and rational soil management to ensure desirable soil functions, without any undesirable environmental side-effects, require adequate soil information. In the last years such data were organized into a computer-based GIS soil database in Hungary, giving opportunities for the quantification, analysis, modelling and forecasting of the studied environmental stresses and for the efficient and scientifically based prevention, elimination or reduction of environmental stresses and their unfavourable ecological and economical consequences.
    Special attention was paid to the assessment of various soil degradation processes, as: (1) soil erosion by water or wind; (2) soil acidification; (3) salinization and/or alkalization; (4) physical degradation (structure destruction, compaction); (5) extreme moisture regime: drought sensitivity and waterlogging hazard; (6) biological degradation; (7) unfavourable changes in the plant nutrient regime; (8) decrease of natural buffering capacity, (9) soil (and water) pollution.
    The actions against undesirable environmental stresses and their unfavourable consequences are important elements of sustainable, efficient, economically viable, socially acceptable and environmentally sound crop production and agricultural development. These are joint tasks of the state, decision makers on various levels, the land owners, the land users and – to a certain extent – of each member of the society.

  • Production of novel fermented milks
    303-305
    Views:
    194

    The objective of this research was to test the influence of various natural substances on acid production, growth, and viability of characteristic microorganisms in yogurt and probiotic fermented dairy foods. Oligofructose, inulin, honey, and the dried biomass of Spirulina (Arthrospira) platensis were found to stimulate the growth rate and acid production activity of the major thermophilic diary cultures tested and, in addition to this, the presence of the aforementioned substrates also improved the survival of starter bacteria in fermented milk products during storage. The reduced production time of cultured milks resulted in increased production efficiency. The stimulatory and/or protective effect of oligofructose,
    inulin, honey, and Spirulina on Bifidobacterium spp. is probably the most important finding of this study because bifidobacteria do not grow well in milk and they have low survival rates in conventional fermented milks. Some of the bioactive substances tested were also capable of exerting an antifungal effect on spoilage yeasts and molds, and improving the nutritional and sensory properties of the final product, thus providing a new opportunity for manufacture of functional fermented dairy foods.

  • Allelopathic effect of invasive plants (Eriochloa villosa, Asclepias syriaca, Fallopia x bohemica, Solidago gigantea) on seed germination
    179-182
    Views:
    318

    The aim of this study was to determine the allelopathic potential of invasive species woolly cupgrass (Eriochloa villosa), common milkweed (Asclepias syriaca), bohemian knotweed (Fallopia x bohemica), and giant goldenrod (Solidago gigantea Ait.) on germination crop (Lepidium sativum L.). Experiments were conducted under laboratory conditions to determine effect of water extracts in petri dish bioassay. Water extracts from fresh biomass (leaves and stem) of invasive weeds in concentrations of 4 and 8 g/100 ml were investigated. All invasive plants showed allelopathic effect on germination. In giant goldenrod stem water extract experiment, allelopathic effect was less pronounced.

    The cress germination was greatly suppressed with the woolly cupgrass, common milkweed and the giant goldenrod. The experiment showed that the seed germination depended on the concentrations and the plant material used (leaves and stem).