Articles

The efficacy of combining paraffin oil with conventional fungicide treatments against grape powdery mildew in Eger

Published:
2022-05-26
Authors
View
Keywords
License

Copyright (c) 2022 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Pálfi, X., Karácsony, Z., Kátai, J., & Zsófi, Z. (2022). The efficacy of combining paraffin oil with conventional fungicide treatments against grape powdery mildew in Eger. Acta Agraria Debreceniensis, 1, 173-180. https://doi.org/10.34101/actaagrar/1/10132
Received 2021-09-30
Accepted 2022-05-02
Published 2022-05-26
Abstract

We aimed to test the combination of paraffin oil (PFO) with regular fungicide treatment to assess its efficacy against grape powdery mildew (GPM) in a small spraying experiment on two Vitis vinifera L. cultivars (Chardonnay and Kékfrankos) with different susceptibility to Erysiphe necator. The visual symptoms of GPM on leaves and clusters were examined at three phenological states. The harvest yield was characterized by two methods, data were analyzed with one-way ANOVA and Tukey post-hoc test. Regular fungicide treatment (CT) and its combinations with PFO showed better results in both varieties to repress GPM in 2015 relative to sole PFO treatments. Mean values of combined treatments were often lower than CT but did not differ significantly from each other. The same was observed in 2016, despite the higher pressure of GPM, and missed the third survey. No significant differences were detected between treatments in yield. In contrast, the mean cluster weight of CT and combined treatments resulted in (insignificantly) higher values in each variety and year. In summary, the sole PFO showed some disease control capability as reported earlier, but this effect was greatly affected by the given vintage. Combining PFO with CT resulted in increased protection against GPM relative to the solely applied fungicides. However, this effect was not significant in all cases. It also depended on the vintage and cultivar characteristics. The beneficial impact of paraffin oil as an additive to CT may be due to the induction of plant stress responses and/or its ability to support the adherence and absorption of the combined agents.

References
  1. Anonymus (növényorvos): Visszatekintés – A szőlő növényvédelmi helyzete 2016-ban. Agrofórom Online, 2017. március 4. 21:52 https://agroforum.hu/novenyvedelmi-elorejelzes/visszatekintes-a-szolo-novenyvedelmi-helyzete-2016-ban/
  2. Bényei, F.–Lőrincz, A. Eds. (2005): Borszőlőfajták, csemegeszőlő-fajták és alanyok, Fajtaismeret és –használat. Mezőgazda Kiadó, Budapest, pp. 107–108; 165–166. (ISBN: 978-963-286-536-2).
  3. Dell, K.J.–Gubler, W.D.–Krueger, R.–Sanger, M.–Bettiga, L.J. (1998): The efficacy of JMS Stylet-Oil on grape powdery mildew and bunch rot and effects on fermentation. American Journal of Enolology and Viticulture, 49:11–16. (available on Researchgate)
  4. Doster, M.A.–Schnathorst, W.C. (1985): Compare Susceptibility of Various Grapevine Cultivars to the Powdery Mildew Fungus Uncinula necator. American Journal of Enolology and Viticulture, 36(2): 101–104.
  5. Ebbon, G.P. (2002): Environmental and health aspects of agricultural spray oils. In: Spray Oils Beyond 2000, Beattie, G.A.C.–Watson, D.M.–Stevens, M.L.–Rae, D.J.–Spooner-Hart, R.N. Eds.; University of Western Sydney, pp. 232–246.
  6. Finger, S.A.–Wolf, T.K.–Baudoin, A.B. (2002): Effects of horticultural oils on the photosynthesis, fruit maturity, and crop yield of winegrapes. American Journal of Enolology and Viticulture. 53:116–124. https://vtechworks.lib.vt.edu/bitstream/handle/
  7. /49441/116.full.pdf?sequence=1&isAllowed=y
  8. Gaforio, L.–García-Muñoz, S.–Cabello, F.–Muñoz-Organero, G. (2011): Evaluation of susceptibility to powdery mildew (Erysiphe necator) in Vitis vinifera varieties. Vitis, 50(3):123–126. (available on Researchgate)
  9. Grove, G.G.–Lunden, J.–Spayd, S. (2005): Use of petroleum delivered spray oils in Washington grapevine powdery mildew management programs. Washington State U, Department of Plant Pathology, online: Plant Health Progress, doi: 10.1094/PHP-2005-0317-01-RS. https://www.plantmanagementnetwork.org/pub/php/research/
  10. /oils/petroleum.pdf
  11. Hajdu, E. (2003): Magyar szőlőfajták/Varieties of Hungarian Grapes, Mezőgazda Kiadó, Budapest, p. 80. (ISBN: 963-286-0179).
  12. Hodgkinson, M.C.–Johnson, D.–Smith, G. (2002): Causes of phytotoxicity induced by petroleum-derived spray oils. In: Spray Oils Beyond 2000, Beattie, G.A.C.–Watson, D.M.–Stevens, M.L.–Rae, D.J.–Spooner-Hart, R.N. Eds.; University of Western Sydney, pp 170–178.
  13. Holb, I. Ed. (2005): A gyümölcsösök és a szőlő ökológiai növényvédelme, Mezőgazda Kiadó, Budapest, pp. 26; 31–32; 79–80. (ISNB: 963-286-160-4.)
  14. Janousek, C.N.–Bay, I.S.–Gubler, W.D. (2009): Control of grape powdery mildew with synthetic, biological, and organic fungicides: 2009 filed trials. Department of Plant Pathology, UC Davis. https://escholarship.org/uc/item/8fz3p4vc
  15. Martín, B.–Hernández, S.–Silvarrey, C.–Jacas, A.J.–Cabaleiro, C. (2005): Vegetable, fish and mineral oils control grapevine powdery mildew. Pyhopathologia Mediterranea. 44:169–179. https://oajournals.fupress.net/index.php/pm/article/view/5126/5124
  16. Miraglia, M.– Marvin, H.J.P.–Kleter, G.A.–Battilanic P. et al. (2009): Climate change and food safety: An emerging issue with special focus on Europe. Food and Chemical Toxicology, 47:1009–1021. https://doi.org/10.1016/j.fct.2009.02.005
  17. Nazari, M.–Dada, A.–Asgharzadeh, A. (2014): Effects of Spray Volck Oil in Different Times on the Cluster Characters of Grape (Kolahdari var) in North-Khorasan Condition. Indian Journal of Fundamental and Applied Life Sciences, 4(2):2231–2345. https://www.cibtech.org/j-life-sciences/publications/2014/vol-4-no-2/jls-088-101-mohsen-effects-condition.pdf
  18. Nádudvari, É.–Horváth, T. (2016): Tapasztalatok a 2015. évi szőlőlisztharmat elleni védekezésről. Agrofórum Extra, 66(27): 71–73.
  19. Nesler, A.–Perazzolli, M.–Puopolo, G.–Giovannini, O.–Elad, Y.–Pertot, I. (2015): A complex protein derivative acts as a biogenic elicitor of grapevine resistance against powdery mildew under field conditions. Frontiers in Plant Sciences, 6:715. https://doi.org/10.3389/fpls.2015.00715
  20. Özkara, A.–Akyil, D.–Konuk, M. (2011): Pesticides, Environmental Pollution, and Health. In: Environmental Health Risk - Hazardous Factors to Living Species, Larramendy, M.L, Soloneski, S.; Eds. Intech Open, DOI: 10.5772/63094. https://www.intechopen.com/
  21. books/environmental-health-risk-hazardous-factors-to-living-species/pesticides-environmental-pollution-and-health
  22. Pautasso, M.–Dehnen-Schmutz, K.–Holdenrieder, O.–Pietravalle, S.–Salama, N.–Jeger, M.J.–Lange, E.–Hehl-Lange, S. (2010): Plant health and global change – some implications for landscape management. Biological Reviews, 85:728–755. https://doi.org/10.1111/j.1469-185X.2010.00123.x
  23. Pautasso, M.–Döring, T.F.–Garbelotto, M.–Pellis, L.–Jeger, M.J. (2012): Impacts of climate change on plant diseases—opinions and trends. European Journal of Plant Pathology, 133(1):295–313. DOI:10.1007/s10658-012-9936-1
  24. Pálfi, X.–Bisztray, Gy.D.–Villangó, Sz.–Pálfi, Z.–Deák, T.–Karácsony, Z.–Cseke, G.–Nagy, P.T.–Zsófi, Zs. (2016): Paraffinolaj hatékonyságának tesztelése szőlőlisztharmat ellen az Egri Borvidéken. Acta Agraria Debreceniensis, 68:73–80. https://ojs.lib.unideb.hu/actaagrar/article/view/1773/1682
  25. Pálfi, X.–Lovas, M.–Zsófi, Zs.–Kátai, J.–Karácsony, Z.–Váczy, K.Z. (2021): Paraffin oil induces resistance against powdery mildew in grapevine through salicylic acid signaling. Pest Management Science, 77:(7)6492. https://onlinelibrary.wiley.com/doi/abs/
  26. 1002/ps.6492
  27. Rae, D.J. (2002): Use of spray oils with synthetic insecticides, acaricides and fungicides. In: Spray Oils Beyond 2000, Beattie, G.A.C.–Watson, D.M.–Stevens, M.L.–Rae, D.J.–Spooner-Hart, R.N., Eds.; University of Western Sydney, pp. 248–266.
  28. Rosenzweig, C.–Iglesias, A.–Yang, X.B.–Epstein, P.R.–Chivian, E. (2001): Climate change and extreme weather events - Implications for food production, plant diseases, and pests. NASA Publications 24, Global Change and Human Health, 2(2):90–104. https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1023&context=nasapub
  29. Sams, C.E.–Dyton, D.E. (2002): Botanical and fish oils: history, chemistry, refining, formulation and current uses. In: Spray Oils Beyond 2000, Beattie, G.A.C.–Watson, D.M.–Stevens, M.L.–Rae, D.J.–Spooner-Hart, R.N., Eds.; University of Western Sydney, pp. 19–28.
  30. Szőke, L. Ed. (1996): A szőlő növényvédelme, Mezőgazda Kiadó, Budapest, pp. 14–27; 137–138.
  31. Vielba-Fernández, A.–Álvaro Polonio, Á.–Ruiz-Jiménez, L.–de Vicente, A.–Pérez-García. A.–Fernández-Ortuño. D. (2020): Fungicide Resistance in Powdery Mildew Fungi. MDPI Microorganisms, 8:1431. DOI:10.3390/microorganisms8091431.
  32. Wicks, T.J.–Hitch, C.J. (2002): Integration of strobilurins and other fungicides for the control of powdery mildew on grapes. Australian Journal of Grape and Wine Research, 8(2):132–139. https://ur.booksc.eu/book/11460359/dac7cc