Search
Search Results
-
Impact of different growing media on propagation of bougainvillea (Bougainvillea spp.) through hardwood stem cuttings in Chitwan, Nepal
37-43.Views:520An experiment was conducted in Rampur, Chitwan, Nepal, in a Randomized Complete Block Design (RCBD) with five treatments: T1 (sand:soil, 1:1) [control], T2 (sand:cocopeat:perlite, 1:1:1), T3 (perlite:sand, 1:1), T4 (sand:cocopeat, 1:1), and T5 (peat moss:perlite, 1:1). Each treatment was replicated four times with a total of 300 planted cuttings. The key parameters evaluated were sprouting percentage, shoot growth (length, leaf number, and branch number), and root development (length, number, fresh, and dry biomass). Analysis of data was done using R-Studio, and Duncan’s Multiple Range Test (DMRT) was performed at a 5% significance level. The results revealed that peat moss:perlite (1:1) demonstrated the highest shoot growth with shoot length of 6.00, 14.38 and 28.78 cm at 30, 60, and 90 Days After Planting (DAP) respectively. Leaf number were 6.25, 13.12, and 19.57, while branch numbers were 1.76, 2.00, and 2.18 at the same intervals., Additionally, the fresh root weight was recorded 8.74 g. Sand:cocopeat:perlite (1:1:1) recorded the highest sprouting percentage (81.66%) and root length (17.11 cm), while sand:cocopeat (1:1) achieved the highest root number (18.37) and dry root weight (0.99 g). Perlite:sand (1:1) exhibited moderate performance with sprouting percentage 69.99%, and root length 12.56 cm. In contrast, control (sand:soil) showed the least favorable results with the lowest sprouting percentage (58.33%), the fewest number of roots (7.81), and the minimum root length (9.73). This study concludes that peat moss:perlite (1:1) is the most effective growing medium for bougainvillea propagation, offering a practical solution to enhance rooting success and growth performance. Sand:cocopeat (1:1) with maximum dry weight of root and maximum number of roots emerged as a reliable alternative, proving the effectiveness of the medium.
-
Foliar Nutrition and Post-Harvest of Onion Seed: Effects of storage temperatures, storage period and foliar nutrition
29-47.Views:411The aim of onion bulb storage is to meet consumer demand for extended availability of onions whilst maintaining product quality. The principal biological factors leading to onion bulb deterioration are respiration, resumption of growth and pathogen attack. In onion bulbs a dormant period, when sprouting and rooting cannot be induced, is followed by a period of internal changes that prepare the bulb for breaking of dormancy and subsequent growth. Out of storage, the bulb then proceeds towards flowering and seed production. Two successive winter seasons of 2008/2009 and 2009/2010 were conducted under sandy soil conditions to study the effect of spraying with 12 commercial compounds on yield and yield components of onion seeds and storage The seed yield of each commercial compounds plot from previous experiment was divided into two groups, storage under room temperature and 5°C. Seeds transferred immediately after drying to Increasing Export Competition of Some Vegetable Crops Project Laboratory located in Faculty of Agriculture, Cairo University. The effects of storage temperature, storage period and foliar with some commercial compounds on onion seed quality were considered. Storage in 5°C had the higher germination percentage than storage in room temperature. Results indicated that as storage period increased the germination percent decreased. The treatment with boron or amica in the first season had the highest germination percentage. While, the treatment with union Zn, union feer, union Mn, boron, elga 600, caboron, amica, hummer or amino X had the highest germination percentage in the second season. Storage in 5°C resulted in higher moisture content than storage in room temperature. Regarding the effect of storage period on moisture content, the water content was significantly increased with prolongation of storage period. The lowest values of water content were recorded for treatments with union feer, shams K or boron in the first season, and union feer, shams K, boron, magnesium, shetocare or hummer in the second one. Catalase activity was significantly decreased as storage period increased. The treatment with shams K, boron, shetocare or amino X had the highest catalase activity in both seasons. Peroxidase activity was significantly decreased as storage period increased. Foliar application with boron had the highest peroxidase activity in both seasons. Seed stored in room temperature had the higher malondialdehyde content than those stored in 5°C in the second season. The malondialdehyde content increased as storage period increased. The treatment with magnesium, caboron and the control in the first season, and the treatment with magnesium and the control in the second season had the highest malondialdehyde content.
-
Vegetative and micropropagation potential of Piper guineense (Schumach and Thonn)
29-36Views:322The continuous loss of forest plants due to deforestation, and the increasing demand for Piper guineense because of its medicinal and food value, has put a permanent pressure on its population in the wild where it is collected. A method for conservation and mass propagation is therefore required. This research was undertaken to determine the optimal concentration of auxin needed for vegetative propagation and to investigate the potential of Piper guineense for micropropagation. The auxin optimization study of vegetative propagation was based on the use of two-nodal stem cuttings treated with five different concentrations of indole-butyric acid (IBA). Growth parameters such as the number of sprouted, rooted and survived cuttings among others were determined. To investigate the potential of Piper guineense for micropropagation, nodal explants were subjected to different sterilizing treatments using ethanol, NaOCl, mancozeb, streptomycin and Plant Preservative Mixture (PPM). The effect of plant growth regulators (PGRs) was tested on sterilized nodal explants using full strength Murashige and Skoog (MS) hormone-free media alone as control and MS media supplemented with PGRs (BA, NAA and KIN) at different concentrations and combinations. Significant differences were observed across the treatments for all growth parameters measured. However, 2000 ppm IBA significantly (p<0.05) influenced sprouting and rooting of the stem cuttings. Piper guineense explants have deep tissue contaminants, which cannot be eradicated by surface sterilization alone except double sterilization using PPM. On control media, neither shoot nor root response was observed while the highest percentage of induced roots was obtained from explants cultured on MS +1 mg/L BA + 0.25 mg/L NAA. Shoot induction was only achieved when BA was used alone and when subcultured on media supplemented with NAA, which generated roots.