Search

Published After
Published Before

Search Results

  • Optimization of fertilizer use efficiency, soil quality and oil palm (Elaeis guineensis Jacq.) growth with biochar under drip irrigation conditions irrigation conditions
    31-36.
    Views:
    88

    Biochar (BC) is an eco-friendly product characterized with high content of carbon and usually obtained by heating biomass without oxygen. Utilizing BC as organic material to amend the problematic soils and improve plant growth and yield has been proved previously. This study investigated the effect of vetiver grass biochar (VGB) on fertilizer use efficiency, soil quality, and oil palm growth performance. A net house experiment was conducted at the Farm Unit, UiTM Sarawak Branch, between August 2022 and March 2023. A factorial randomized complete block design (RCBD) with five treatments and four replications was devised. Treatments applied were: T0) absolute control; T1) 100% NPK fertilizer; T2) 100% vetiver grass biochar; T3) 50% vetiver grass biochar + 50% NPK fertilizer; and T4) 25% vetiver grass biochar + 75% NPK fertilizer. The BC application significantly improved the fertilizer use efficiency through reducing the rate of fertilizer applied. It also significantly enhanced most soil-measured chemical properties and soil nutrients. The growth performance of oil palm plant was significantly enhanced by BC application in terms of plant height, hump diameter, leaf number, chlorophyll content, and plant biomass. The BC application demonstrated its usefulness in managing soil and cultivating oil palm plant sustainably by reducing the rate of fertilizer applied and improve the fertilizer use efficiency. Based on the output, we suggest that treatment T3 (50% vetiver grass biochar + 50% NPK) can be used to improve the growth performance of oil palm.

  • Agromorphological and nutritional quality profiles of fluted pumpkin (Telfairia occidentalis Hook F.) as influenced by cultivar, growing medium and soil amendment source
    53-59.
    Views:
    136

    Fluted pumpkin (Telfairia occidentalis Hook F.) is popular as food and feed around the world. Sixteen treatments were developed from factorial combinations of three factors: cultivar (ugu elu and ugu ala), growing medium (garden soil (GS) and white sand (WS)), and soil amendment source (poultry manure, NPK, supergro and no amendment). A pot experiment was conducted to investigate the agromorphological and nutritional traits of fluted pumpkin obtained from the treatments. Fresh leaves were analyzed for crude protein, crude fibre, crude lipid, total ash, phytate and nitrate concentrations. Data were subjected to analysis of variance and principal component analysis. Mean plots were used to explain the effects of the three factors and profiling was done using the GYT biplot. There were significant (p≤0.05/0.01) mean squares for measured traits, suggesting the possibility of selection among the treatments. Plants in GS consistently out-performed those in WS for shoot weight, leaf length, and number of leaves per plant possibly due to greater availability of nutrients in the GS. Inconsistent patterns observed in the proximate concentrations of pumpkin from the 16 treatments showed the role of interaction among the three factors. Principal component analysis identified some traits as contributors to differences among the treatments which can be basis of selection. Treatments 2, 4, 6, 8, 10, 11, 12, 13, 14, 15, and 16 might be useful to improve vegetative yield while 1, 3, 5, 7, and 9 could improve nutritional values of the fluted pumpkin.

  • Effects of biochar and inorganic fertiliser on the growth and yield of beetroot (Beta vulgaris L.) in Kenya
    37-45.
    Views:
    285

    Beetroot (Beta vulgaris L.) is a root vegetable packed with many nutritional benefits such as minerals and vitamins. Despite its importance in Kenya, farmers get about 30-35 t/ha which is significantly lower than the potential yield (68 t/ha). This is mostly attributed to low soil fertility. This study aimed to determine the response of the beetroot growth and yield on biochar and NPK. A 3×4 factorial experiment was carried out at Egerton University farm over two seasons to test the effects of biochar and NPK (17-17-17), under supplemental irrigation. Biochar (0, 5, 10 t/ha) was combined with NPK (0, 200, 300, 400 kg/ha). The combination of Biochar and NPK increased significantly (p ≤ 0.05) beetroot growth and yield in two seasons. Treatment B10N400 showed the tallest plants (79.2 cm) at 90 days in season two, while the control resulted in the shortest (27.6 cm). Treatment B10N200 showed the biggest (213.2 cm2) leaves at 90 days. The treatment B5N300 recorded the highest marketable yield (84 t/ha) in season two and the lowest was B0N0 with 2.6 t/ha. Sole application of NPK rates (200, 300, 400 kg/ha) increased significantly the growth and yield of beetroot compared to the control in both seasons. In season one, N300 (300 kg/ha) had 61.9 t/ha of the total yield, the control had the lowest. In season two, 300 kg/ha had 83 t/ha of total yield. Biochar increased beetroot growth and yield in season 2. Treatment B5 recorded the highest marketable yield of 61.2 t/ha, while the control showed the lowest of 53 t/ha.

  • Effect of biochar and inorganic fertilizer on the quality of beetroot (Beta vulgaris L.) in Kenya
    7-13.
    Views:
    207

    Despite its health benefits, the production and quality of beetroot is still low in Kenya due to the application of non-recommended rates of fertiliser and soil amendment. This research aimed at contributing to the improvement of the beetroot quality in Kenya. It was designed to determine the effects of biochar and NPK (17-17-17) on the quality of beetroot in Kenya. An RCBD factorial experiment was conducted at Egerton University farm, Kenya, for two seasons.  Biochar (0, 5, 10 t/ha) and NPK (0, 200, 300 and 400 kg/ha) were applied together before planting. Data were collected on beetroot diameter, total phenolics, total soluble solids, calcium, iron and phosphorus contents and analysed using SAS statistical software. The co-application of biochar and NPK significantly (p≤0.05) increased the beetroot diameter, iron, calcium, phosphorus, TSS and phenolics content in season two and not in season one. The sole application of biochar showed a significant increase in the iron content of beetroot in season one. However, biochar did not have a significant effect on beetroot diameter, mineral content, TSS and phenolics content of beetroot in season two. The sole application of NPK at 200, 300 and 400 kg/ha significantly (p≤0.05) increased the diameter of beetroot and iron content in both seasons one and two and also significantly improved the calcium and phosphorus content in season two. These NPK levels were not statistically different from each other, but different from the control. It is therefore recommended to apply NPK and biochar for quality beetroot.