Articles

Effect of biochar and inorganic fertilizer on the quality of beetroot (Beta vulgaris L.) in Kenya

Published:
2024-07-16
Authors
View
Keywords
License

Copyright (c) 2024 International Journal of Horticultural Science

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

How To Cite
Selected Style: APA
Kwizera, E., Mungai, N. W. ., Opiyo, A. M., & Niyokuri, . N. A. (2024). Effect of biochar and inorganic fertilizer on the quality of beetroot (Beta vulgaris L.) in Kenya. International Journal of Horticultural Science, 30(1), 7-13. https://doi.org/10.31421/ijhs/30/2024/13744
Abstract

Despite its health benefits, the production and quality of beetroot is still low in Kenya due to the application of non-recommended rates of fertiliser and soil amendment. This research aimed at contributing to the improvement of the beetroot quality in Kenya. It was designed to determine the effects of biochar and NPK (17-17-17) on the quality of beetroot in Kenya. An RCBD factorial experiment was conducted at Egerton University farm, Kenya, for two seasons.  Biochar (0, 5, 10 t/ha) and NPK (0, 200, 300 and 400 kg/ha) were applied together before planting. Data were collected on beetroot diameter, total phenolics, total soluble solids, calcium, iron and phosphorus contents and analysed using SAS statistical software. The co-application of biochar and NPK significantly (p≤0.05) increased the beetroot diameter, iron, calcium, phosphorus, TSS and phenolics content in season two and not in season one. The sole application of biochar showed a significant increase in the iron content of beetroot in season one. However, biochar did not have a significant effect on beetroot diameter, mineral content, TSS and phenolics content of beetroot in season two. The sole application of NPK at 200, 300 and 400 kg/ha significantly (p≤0.05) increased the diameter of beetroot and iron content in both seasons one and two and also significantly improved the calcium and phosphorus content in season two. These NPK levels were not statistically different from each other, but different from the control. It is therefore recommended to apply NPK and biochar for quality beetroot.

References
  1. Anglov, T., Petersen, I. M., Kristiansen, J. (2003): Uncertainty of nitrogen determination by the Kjeldahl method. In: De Bièvre P, Günzler H. (Eds). Measurement Uncertainty in Chemical Analysis. Berlin, Heidelberg, Springer: 273–279. https://doi.org/10.1007/978-3-662-05173-3_49
  2. Azadi, N., & Raiesi, F. (2021): Biochar alleviates metal toxicity and improves microbial community functions in a soil co-contaminated with cadmium and lead. Biochar 3(4): 485–498. https://doi.org/10.1007/s42773-021-00123-0
  3. Barba-Espin, G., Glied-Olsen, S., Dzhanfezova, T., Joernsgaard, B., Lütken, H., Müller, R. (2018): Preharvest application of ethephon and postharvest UV-B radiation improve quality traits of beetroot (Beta vulgaris L. ssp. vulgaris) as source of colourant. BMC Plant Biology 18(1): 316. https://doi.org/10.1186/s12870-018-1556-2
  4. Basak, S., Kundu, D. (2013): Evaluation of measurement uncertainty components associated with the results of complexometric determination of calcium in ceramic raw materials using EDTA. Accreditation and Quality Assurance 18(3): 235–241. https://doi.org/10.1007/s00769-013-0979-6
  5. Biratu, G. K., Elias, E., Ntawuruhunga, P. (2022): Does the application of mineral and organic fertilizer affect cassava tuber quality? An evidence from Zambia. Journal of Agriculture and Food Research 9: 100339. https://doi.org/10.1016/j.jafr.2022.100339
  6. Burbano-Figueroa, O., Pérez-Pazos, J. V., Moreno-Moran, M. (2022): Assessing NPK use efficiency of commercial inoculants in cassava (Manihot esculenta Cratz): An application of data envelopment analysis. Journal of Crop Science and Biotechnology 25(3): 253–267. https://doi.org/10.1007/s12892-021-00128-y
  7. Christou, A., Stylianou, M., Georgiadou, E. C., Gedeon, S., Ioannou, A., Michael, C., Papanastasiou, P., Fotopoulos, V., Fatta-Kassinos, D. (2022): Effects of biochar derived from the pyrolysis of either biosolids, manure or spent coffee grounds on the growth, physiology and quality attributes of field-grown lettuce plants. Environmental Technology & Innovation 26: 102263. https://doi.org/10.1016/j.eti.2021.102263
  8. Farhangi-Abriz, S., Torabian, S. (2018): Effect of biochar on growth and ion contents of bean plant under saline condition. Environmental Science and Pollution Research 25(12): 11556–11564. https://doi.org/10.1007/s11356-018-1446-z
  9. Fattahi, S., Zabihi, E., Abedian, Z., Pourbagher, R., Motevalizadeh Ardekani, A., Mostafazadeh, A., Akhavan-Niaki, H. (2014): Total phenolic and flavonoid contents of aqueous extract of stinging nettle and in vitro antiproliferative effect on hela and BT-474 cell lines. International Journal of Molecular and Cellular Medicine 3(2): 102–107.
  10. Feller, C., Fink, M. (2004): Nitrate content, soluble solids content, and yield of table beet as affected by cultivar, sowing date and nitrogen supply. HortScience 39(6): 1255–1259. https://doi.org/10.21273/HORTSCI.39.6.1255
  11. Garrett, L. G., Lin, Y., Matson, A. L., Strahm, B. D. (2023): Nitrogen isotope enrichment predicts growth response of Pinus radiata in New Zealand to nitrogen fertiliser addition. Biology and Fertility of Soils 59(5): 555–566. https://doi.org/10.1007/s00374-022-01671-8
  12. Gondwe, R. L., Kinoshita, R., Suminoe, T., Aiuchi, D., Palta, J. P., Tani, M. (2020): Available soil nutrients and NPK application impacts on yield, quality, and nutrient composition of potatoes growing during the main season in Japan. American Journal of Potato Research 97(3): 234–245. https://doi.org/10.1007/s12230-020-09776-2
  13. Hlisnikovsky, L., Menšík, L., Krizova, K., & Kunzová, E. (2021): The effect of farmyard manure and mineral fertilizers on sugar beet beetroot and top yield and soil chemical parameters. Agronomy 11: 133. https://doi.org/10.3390/agronomy11010133
  14. Hodges, C. B., Stone, B. M., Johnson, P. K., Carter, J. H., Sawyers, C. K., Roby, P. R., Lindsey, H. M. (2023): Researcher degrees of freedom in statistical software contribute to unreliable results: A comparison of nonparametric analyses conducted in SPSS, SAS, Stata, and R. Behavior Research Methods 55: 2813-2837. https://doi.org/10.3758/s13428-022-01932-2
  15. Jastrzębska, A. (2009): Modifications of spectrophotometric methods for total phosphorus determination in meat samples. Chemical Papers 63(1): 47–54. https://doi.org/10.2478/s11696-008-0091-2
  16. Jindo, K., Sánchez-Monedero, M. A., Mastrolonardo, G., Audette, Y., Higashikawa, F. S., Silva, C. A., Akashi, K., Mondini, C. (2020): Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment. Chemical and Biological Technologies in Agriculture 7(1): 16. https://doi.org/10.1186/s40538-020-00179-3
  17. Kätterer, T., Roobroeck, D., Kimutai, G., Karltun, E., Nyberg, G., Sundberg, C., de Nowina, K. R. (2022): Maize grain yield responses to realistic biochar application rates on smallholder farms in Kenya. Agronomy for Sustainable Development 42(4): 63. https://doi.org/10.1007/s13593-022-00793-5
  18. Keerthanan, S., Rajapaksha, A. U., Mašek, O., Vithanage, M. (2023): Plant uptake of personal care products and biochar-assisted immobilization in soil: An appraisal. Journal of Soils and Sediments 23: 2669-2684. https://doi.org/10.1007/s11368-022-03400-y
  19. Koné, S., Galiegue, X. (2023): Potential Development of Biochar in Africa as an Adaptation Strategy to Climate Change Impact on Agriculture. Environmental Management 72(6): 1189–1203. https://doi.org/10.1007/s00267-023-01821-0
  20. Li, X., Song, B., Yin, D., Lal, M. K., Riaz, M., Song, X., Huang, W. (2023): Influence of biochar on soil properties and morphophysiology of sugar beet under fomesafen residues. Journal of Soil Science and Plant Nutrition 23:1619-1632. https://doi.org/10.1007/s42729-023-01157-y
  21. Maity, T., Bawa, A. S., Raju, P. S. (2016): Optimization and quality assessment of ready-to-eat intermediate moisture compressed beetroot bar. Journal of Food Science and Technology 53(8): 3233–3243. https://doi.org/10.1007/s13197-016-2299-4
  22. Majumder, D., Saha, S., Mukherjee, B., Das, S., Rahman, F. H., Hossain, A. (2023): Biochar application for improving the yield and quality of crops under climate change. In: S. Fahad, S. Danish, R. Datta, S. Saud, & E. Lichtfouse (Eds.). Sustainable Agriculture Reviews 61: Biochar to Improve Crop Production and Decrease Plant Stress under a Changing Climate. Springer, Cham: 3-55 International Publishing. https://doi.org/10.1007/978-3-031-26983-7_1
  23. Misra, V., Srivastava, S., Mall, A. K. (Eds) (2022): Sugar Beet Cultivation, Management and Processing. Springer Nature. https://doi.org/10.1007/978-981-19-2730-0
  24. Muthini, D., Nzuma, J., Nyikal, R. (2020): Farm production diversity and its association with dietary diversity in Kenya. Food Security 12(5): 1107–1120. https://doi.org/10.1007/s12571-020-01030-1
  25. Okalebo, J. R., Gathua, K. W., Woomer, P. L. (2002): Laboratory Methods of Soil and Plant Analysis: A Working Manual. Laboratory Methods of Soil and Plant Analysis: A Working Manual.
  26. Pangestika, P., Suminarti, N. E., Barunawati, N. (2021): The effect of nitrogen source and dosage on growth, result and quality of red beetroot (Beta vulgaris L.). Natural Volatiles & Essential Oils 8(6): 430–446.
  27. Pathy, A., Ray, J., Paramasivan, B. (2020): Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar 2(3): 287–305. https://doi.org/10.1007/s42773-020-00063-1
  28. Petek, M., Toth, N., Pecina, M., Karažija, T., Lazarević, B., Palčić, I., Veres, S., Ćustić, M. H. (2019): Beetroot mineral composition affected by mineral and organic fertilization. PLoS ONE 14(9): e0221767. https://doi.org/10.1371/journal.pone.0221767
  29. Ruan, R., Yuan, Y., Wang, C., Wang, Y. (2023): Biochar effects on drought tolerance in maize roots are linked to K+ concentration, Ca2+ efflux, and apoplastic pH. Plant Growth Regulation. https://doi.org/10.1007/s10725-023-01104-y
  30. Sapkota, A., Sharma, M.D., Giri, H.N., Shrestha, B., Panday, D. (2021): Effect of organic and inorganic sources of nitrogen on growth, yield, and quality of beetroot varieties in Nepal. Nitrogen 2:378-391. https://doi.org/10.3390/nitrogen2030026
  31. Shi, Y., Yu, Y., Chang, E., Wang, R., Hong, Z., Cui, J., Zhang, F., Jiang, J., Xu, R. (2023): Effect of biochar incorporation on phosphorus supplementation and availability in soil: A review. Journal of Soils and Sediments 23(2): 672–686. https://doi.org/10.1007/s11368-022-03359-w
  32. Simon, P. W. (2021): Carrot (Daucus carota L.) Breeding. In: Al-Khayri JM, Jain SM, Johnson DV, (Eds). Advances in Plant Breeding Strategies: Vegetable Crops: Volume 8: Bulbs, Roots and Tubers. Springer International Publishing: 213–238. https://doi.org/10.1007/978-3-030-66965-2_5
  33. Takeda, N., Friedl, J., Kirkby, R., Rowlings, D., De Rosa, D., Scheer, C., Grace, P. (2022): Interaction between soil and fertiliser nitrogen drives plant nitrogen uptake and nitrous oxide (N2O) emissions in tropical sugarcane systems. Plant and Soil 477(1): 647–663. https://doi.org/10.1007/s11104-022-05458-6
  34. Tian, J., Lou, Y., Gao, Y., Fang, H., Liu, S., Xu, M., Blagodatskaya, E., Kuzyakov, Y. (2017): Response of soil organic matter fractions and composition of microbial community to long-term organic and mineral fertilization. Biology and Fertility of Soils 53(5): 523–532. https://doi.org/10.1007/s00374-017-1189-x
  35. Varga, I., Lončarić, Z., Kristek, S., Kulundžić, A. M., Rebekić, A., Antunović, M. (2021): Sugar beet root yield and quality with leaf seasonal dynamics in relation to planting densities and nitrogen fertilization. Agriculture 11(5): 5. https://doi.org/10.3390/agriculture11050407
  36. Wang, X., Wang, P. (2022): Red beetroot juice fermented by water kefir grains: Physicochemical, antioxidant profile and anticancer activity. European Food Research and Technology 249:939-950. https://doi.org/10.1007/s00217-022-04185-7
  37. Zelaya, K. P. S., Alves, B. S. Q., Colen, F., Frazão, L. A., Sampaio, R. A., Pegoraro, R. F., Fernandes, L. A. (2019): Biochar in sugar beet production and nutrition. Ciễncia Rural 49 (5): e20180684. https://doi.org/10.1590/0103-8478CR20180684