Search

Published After
Published Before

Search Results

  • Association of varieties in stone fruit plantations
    29-33.
    Views:
    205

    In the majority of Hungarian orchards of stone fruits, the planting distance is 6-7 m x 4-5 m. As many of the current varieties are self-incompatible, planting designs are applied to provide for adequate pollinisers. As long as differences in blooming time are small, i.e. 3-5 days at most, overlaps of blooming of the associated varieties are sufficient for fruit set.

    In sour cherry, one leading variety, Pándy, is self-incompatible and requires two polliniser varieties at least (Ciganyneggy or some sweet cherry varieties). Pándy is, moreover, cross-incompatible with the varieties Debreceni bőtermő, Kántorjánosi and Újfehértói fürtös being all of them self-fertile as most of new varieties recommended, by the way, for being planted to monovarietal blocks.

    Among European plums there are varieties registered as male sterile, self-incompatible, parially self-fertile and self-fertile, respectively. For the purpose of cross pollination, the choice of two varieties, at least, to be associated to any variety belonging to the first three groups, is recommended. The number of rows in blocks planted to self incompatible or male-sterile varieties should not be higher than 2-(4). Inter-incompatibility has been observed within the currently recommended assortment, between the varieties Cacanska najbolja and Stanley, only. Chinese-Japanese plums are scarcely represented in Hungarian plantations. Variation of blooming time in varieties is somewhat more pronounced, i.e. 5-8 days. There is but a weak tendency to self-fertility, thus practically, all varieties are considered as self-incompatible, thus the planting of two-row blocks for each of three varieties, at least, are recommended to be associated.

    Self-incompatibility and partially self-fertile apricot varieties are recommended to be combined with two polliniser varieties, at least, each planted to two-row blocks. The varieties Ceglédi óriás, Ligeti óriás, Nagykőrösi óriás and Szegedi Mammut are mutually inter-incompatible. Most of the peach varieties grown in Hungary are self-fertile, thus they are planted to large blocks, each. On sites threatened by late spring frost, it is recommended to plant (monovarietal) blocks of 4-6 rows at most. Cross-pollination may increase fruit set even in self-fertile varieties.

     

  • General principles in variety-association for intensive plantations of pomeceous fruits
    96-101.
    Views:
    353

    Under conditions of Hungary, more than 400 varieties of apple, pear and quince varieties have been observed for time of blooming and fertility relations in order to check the possibility of their use for intense plantations in different combinations with polliniser varieties. Low (below 3%) rate of self-fertility occurred at 65% of apple varieties. That partial self-fertility, however, is far from being sufficient to produce acceptable yield, thus allogamous pollination is absolutely necessary. The same is true for the rear and quince varieties grown in Hun­gary, too. The normal development requires the presence of viable seeds in the fruit set, most in quince, therefore, association of the right varie­ties is most important in that species. Apple and pear varieties are assigned according to their blooming time to 4, quince varieties to 3 groups. The yield of all three pomaceous species declines with the growing distance from the potential pollen source. In the intense plantations, the critical (maximum) distance to be observed is 20 m for apple and 15 m for pear and quince. In combining the placement of varieties, also the principles of a variety-specific cultivation are to be considered carefully. The double objectives are satisfied most by the system of Malus­pollinisers developed for intense plantations.

  • Bee pollination and association of apricot varieties
    20-24.
    Views:
    256

    Apricot yields are highly variable according to the season. The variation is caused mainly by the adversities during the critical processes of floral biology, i.e. blooming and fertilisation. On the basis of information concerning blooming time and mutual compatibility relations of apricot varieties a system of securing regular and adequate yields has been developed.

    Winter frosts of the continental type are well tolerated by most of the apricots, however, after the end of rest period, flower buds are loosing frost tolerance, 'rapidly.

    Being one of the fruit species blooming earliest during the early spring, apricot start to bloom in Hungary around the end of March or early April as a mean of many years, but it also happened, exceptionally that apricot started to bloom at February 20 (at Letenye South Hungary). The early season, exposes the floral organs to frost injuries. As a consequence, apricot orchards on the Great Plain produce low yields in 3 years, intermediate yields in other 3 years out of a ten-year-period.

    Moreover, weather conditions during the blooming period are often unfavourable for pollination. Cool, windy and rainy weather prevents the flight of insects and on the other hand, warm spells shorten the blooming process, nectarines and stigmata get dry and the female gametes loose viability before effective pollination occurres.

    The fertility of individual cultivars are meeting different obstacles. Apricot cultivars differ greatly in the rate of flowers bearing underdeveloped pistils, which may attain even 60% (e.g. Orangered). New commercial cultivars are often self-incompatible. Local varieties of that type in Hungary are the „óriás" varieties (e.g. Ceglédi óriás, Szegedi mammut), and the new hybrid Ceglédi Piroska. Many of the cultivars are variable in their self-fertility (partially self-fertile): Budapest, Harmat, Korai piros, Mandulakajszi.

    Inter-incompatibility is also known in apricots. The „óriás " varieties do not fertilise each other. During the growth of fruits, cool spells (2-4 °C) caused severe fruit shed in Ceglédi óriás.

    Apricot flowers produce pollen and nectar at average rates related to other fruit species, thus bees are attracted sufficiently. Bee visits are very variable according to growing site and season. Most of the bees are pollen gatherers but sometimes nectar suckers are in majority. Bee pollination is necessary not only for the self-incompatible varieties but also to enhance the yield of self-fertile varieties.

    Taking the blooming and fertility relations of the cultivars into account, plantations should not exceed two rows to a particular self-incompatible varieties, and possibly two different polliniser varieties are suggested to be planted as flanking the block in question.

    In commercial plantations 2 to 4 bee colonies per hectare are proposed to move for the whole blooming period.

     

  • Effect of the placement of self-incompatible apricot varieties on their yield in commercial plantations
    82-86.
    Views:
    296

    Earlier studies concerning self-, free- and cross- fertilization of apricot varieties grown in Hungary, proved the existence of self-sterile as well as self-fertile varieties within the recommended assortment. The self-sterile and partially self-fertile varieties should be planted in association with polliniser varieties, only. The present paper reports about the yields of trees of the widely grown, self-sterile local variety, Ceglédi óriás (Giant of Cegléd), depending on the distance of adequate polliniser trees. In the univarietal, 27 row-wide block of the relevant variety, an efficient polliniser, Magyar kajszi was planted to the 10th and 19th row. In the close vicinity, another block of polliniser, Rózsakajszi C. 320 was located. The number of fruits set per tree has been counted or estimated in two consecutive years. In both seasons, the yield of the Ceglédi óriás trees diminished with the growing distance from the nearest polliniser trees. Those trees in the center of the block, between the two (10th and 19th) rows of Magyar kajszi bore acceptable yield (40 kg/tree in 1987), however, considerable reduction of the number of the fruits set was stated already in the 4-5th row from the polliniser away. Similar gradient of fruit set was apparent in relation to the neighbouring block of Rózsakajszi C 320. The beneficial effect of the vicinity of polliniser varieties was obvious as far as the distance of the 10th row. Taking into consideration the self-sterility, the early blooming time and the poor fertilization of the variety Ceglédi óriás, a planting design of associating it with at least two polliniser varieties (e.g. Gönci magyar kajszi and Ceglédi bíbor) is highly recommended. On the basis also of earlier results, a proposal has been developed for the association of apricot varieties as recommendations for optimising yields. Blooming time, fertilizing potential, schedule of the picking season and market possibilities have to be considered simultaneously.

  • Time of flowering and fertilisation of quince varieties
    9-15.
    Views:
    290

    Literature dealing with flowering and fertilisation of quince is scarce. Most controversial and scanty are informations on observations of self- and cross-pollination. According to our observations, differences in blooming time are few (2-3) days only, thus flowering of most varieties is synchronous. The varieties observed are grouped as early, intermediate and late flowering ones. Self fertility of the individual varieties, however, was not assessed unequivocally, therefore it is recommended, by safety reasons, to consider quince actually as a whole to be auto-incompatible. Artificial self-pollination (or rather geitonogamy) as well as cross pollination with other varieties increased substantially fruit set if compared with the results of natural self-pollination (autogamy). According to the fruit set of their open pollinated flowers, varieties have been classified according to fertility as low (below 10 %), medium (between 10 and 20 %) and high (more than 20 %). Cross fertility of varieties is highly variable depending on combination and on season. Contradictory data are probably due to the sensitivity of quince to conditions of search. Better fruit set was coincident with higher number of stout seeds per fruit. Well developed seeds are definitely a prerequisite of larger fruit size.

     

  • Association of European plum varieties in the orchards
    21-24.
    Views:
    282

    The flowering phenology, blooming time and inter-fertility relations of 63 European plum varieties has been studied at growing sites with different ecological conditions during a 10 year long period. The purpose was to develop a system of variety combinations which approaches an optimum in fertility as long as inter-fertility relations will cease to be a limiting factor of yield. According to their blooming time, varieties are assigned to 5 groups: very early, early, medium, late and very late. As for their fertility relations, four groups are formed: self-sterile (0%), partially self-fertile (0.1 to 10 %), self-fertile (10.1 to 20 %) and highly self-fertile (more than 20 % fruit set with self pollination). The four categories of fruit set at free pollination are also relevant to the grower: low (less than 10 %), medium (10 to 20 %), high (20 to 40 %) and very high (more than 40 % fruit set).

    By artificial cross pollination, one combination Cacanska najbolja x Stanley proved to be mutually inter-incompatible. Blocks planted to a single self-sterile variety flanking a pollinizer variety proved the spacial distribution of the pollen. The reduction in fruit set was already apparent in the second row away from the pollinizer trees. In a large plantation, without bee hives, relatively low yield was stated on self-sterile trees even close to the pollinizer.

    In the case of self-sterile and partially self-fertile varieties, a combination of three varieties is recommended. The blooming period of the pollinizer variety should overlap the period of the self-sterile variety at least by 70 %, and the distance should not exceed 15 to 20 meters. Association of self-fertile varieties may also enhance the productivity of the trees. In that case an overlap of 50 % in blooming time and a maximum distance between the varieties of 30 to 40 meters will be sufficient.

     

  • Blooming phenology and fertility of sour cherry cultivars selected in Hungary
    33-37.
    Views:
    207

    Experiments were conducted during the period between 1972 and 2002 at three sites in Hungary. At Érd 97, Helvetia 10, and Újfehértó, 3 cultivars were studied in variety collections. Observations were made on the blooming phenology (start, main time, end and length of the bloom period), on the blooming dynamics (the rate of the open flowers counted every day), on the receptivity of sexual organs, on the fruit set following self- and open-pollination and on the effect of association of varieties in the orchards (choice, rate and placement of pollinisers).

    Based on the results the rate of the overlap of the blooming times were calculated and varieties were assigned into five bloom time groups according to their main bloom. Self-fertility conditioned by natural self pollination was studied and good pollinisers were chosen (sweet, sour and duke cherry varieties) for the self-sterile and partially self-fertile varieties.

    The necessity of bee pollination was proved by different pollination methods: natural self-pollination, artificial self-pollination, open pollination. Summary: Experiments were conducted during the period between 1972 and 2002 at three sites in Hungary. At Érd 97, Helvetia 10, and Újfehértó, 3 cultivars were studied in variety collections. Observations were made on the flowering phenology (start, main time, end and length of the bloom period), on the flowering dynamics (the rate of the open flowers counted every day), on the receptivity of sexual organs, on the fruit set following self- and open-pollination and on the effect of association of varieties in the orchards (choice, rate and placement of pollinisers).

  • Inheritance of blooming time in walnut, with regard to the property of reproductional autoregulation of species
    118-122.
    Views:
    137

    A great number of crosses have been made with Hungarian and foreign varieties as partners to breed improved varieties. This species shows a particular trait, namely the autoregulation of fruit set, which affects considerably the productivity of commercial orchards. Thus the inheritance of the blooming time of the male and female flowers has been explored for several years in the progenies.

    It has been stated that

    - the feature of the partners does not turn up predictably in the progeny,

    - it is most important to take into consideration the blooming time class of both, male and female flowers in planning associations of varieties for commercial orchards.

    - in years of irregular spring weather the stability of the blooming time of the variety or in other words the deviation of the actual blooming time of variety from its characteristic blooming-time class is also very important.

     

  • Pál Maliga, founder of the research in floral biology of fruit species in Hungary
    57-60.
    Views:
    266

    Pál Maliga founded the Hungarian research in floral biology of fruit species during his more than forty-year-long carrier. Almost all pome and stone fruit species have been covered by his activities, but he also dealt with the fertility of walnut and chestnut. Regularities have been revealed and the methodical studies opened the way to approach and elaborate alternatives for the association of varieties in planning high yielding commercial plantations. In his breeding activity the choice of crossing parental varieties was based on the knowledge in fertility relations. The obtained sour cherry varieties represent the world-wide maximum quality, reliability and security of yields. Hungarian renewed sour cherry cultivation owes its fame and prosperity to those varieties, nevertheless also to the radical knowledge of the biological bases of fertility.

  • Floral biology and fertility in peaches (Review article)
    9-14.
    Views:
    208

    Floral biology and fertility in peaches (Review article)