Search

Published After
Published Before

Search Results

  • Rootstocks for Cherries from the Department of Fruit Science Budapest
    63-66.
    Views:
    161

    Cherry rootstock breeding started at the Department of Fruit Science, SSU Budapest by the late 50-s and the activity can be divided into three main groups. In the first stage the activity was focused on collection of native mahaleb cherry (Prunus mahaleb L.) varieties lead by L. Sebők. After evaluation in the nursery and orchard tests there are four promising rootstock cultivars selected from this material: 'Korponay' used as self fertile seed tree, its seedlings are recommended for sour cherries. The mahaleb varieties 'Bogdány' (vigorous), 'Egervár' and 'Magyar' (medium vigour) are propagated by cuttings. The next project has started in 1979 with the aim to select self fertile mahaleb seed trees producing homogeneous seedling populations with reduced vigour. Inbred populations from isolated flowering self fertile trees were produced and planted out in 1980. The inbreeding of 'Korponay' self fertile P. mahaleb variety resulted in specimens with different fruit colour (yellow, red, black), fruit shape and size. From among them self fertile trees were selected with various growth characteristics. Seedlings of that self fertile mother trees (S2 population) were tested in seedbed, they showed homogeneous phenotype characteristics as liners in the nursery. As rootstock of 'Érdi bőtermő' sour cherry in the orchard most of the S2 lines proved to be less vigorous in comparison to SI popuplations. 'Érdi bőtermő' trees budded on certain S2 lines in the orchard are more productive than those on S1 ('Korponay' seedling). Characteristics of the S2 generation as seed tree were studied as well. We expect to get morphologically homogeneous seedling populations with different growth vigour and good productivity in the later inbred generations. In the last couple of decades the research activity concerning ground-cherry and its hybrids resulted in dwarfing rootstocks. Prunus fruticosa Pall. hybrids from the natural flora of Hungary were collected and artificial hybrids were created between P. fruticosa and mahaleb cherry. Most of them are in the initial tests, only one of them is before registration, named 'Prob', which is a dwarf rootstock for sweet cherry. By the screening of new hybrids medium vigorous or semi dwarfing and precocious rootstocks seem to be promising for the cherry industry.

  • Antioxidant characterization of apricot (Prunus armeniaca L.) cultivars and hybrids
    47-51.
    Views:
    169

    This report forms a part in our long-term study dedicated to reveal the antioxidant properties of apricot fruits through several years. Nineteen apricot cultivars and 8 hybrids were comparatively analysed. Total phenol content and antioxidant activity showed a good correlation. The tested cultivars and hybrids could be arranged in three groups representing different antioxidant activities, 12 entries were involved in the group with relatively low antioxidant capacity (FRAP value < 1500 mmol/L); 10 accessions were classified in the group with medium antioxidant capacity (1500 mmol/L < FRAP value < 3000 mmol/L); and 5 genotypes were grouped to the category of high antioxidant value (FRAP > 3000 mmol/L). `Morden 604' produced a surpassingly outstanding antioxidant character. H-donating ability has further supported our results. Phenolic substances were accumulated and ferric reducing ability was increased in the ripe fruits compared to the unripe ones. High levels of variations in the total phenol content and antioxidant capacity in of apricot fruits were revealed in this study. Environment, year or rootstocks may also influence the antioxidant properties of fruits. however it seems to be convincing that crossing parents with outstanding antioxidant character can produce hybrids with higher antioxidant capacity. Hungarian apricots are widely appreciated for their premium flavour and — as it was evidenced in this study — for their relatively good antioxidant properties. However, delicious fruits should be made functional foods having beneficial health effects through accumulating large amounts of antioxidant molecules in the fruit flesh.

  • Long term investigations of flowers and leaves on mainly non-domestica plums
    73-79.
    Views:
    161

    The author dealt with plum species representing different eco-geographic areas by their genetic adaptation and their hybrids, as European (P. domestica, P. italica, P. cerasifera), Asian (P. salicina, P. simonii, P. ussuriensis), American (P. americana, P. besseyi, P. munsoniana, P. tomentosa). The rootstocks of the trees examined were seedlings of C. 679 myrobalan with the exception of Laroda and Santa Rosa II, which were grown on three different stocks: seedlings of C. 174 myrobalan, C. 449 bitter almond and C. 471 sweet almond. The size of peduncle, length of pistil, stamen number per flower, relative stamen number (SN/PL) have been suitable for description and distinction of varieties. Similarly shape of leaves, length of petiole, length and width of blade helped the identification.

    The ratio of the dimensions of leaves, length of petiole and of leaf blade, also contributed to the distinction of European, Asian and American plum species, notwithstanding their relations with ecological conditions as well as historical, technical properties, pomological features, etc. Computed indicators (relative stamen number and shape-index of leaves) also have been useful data.

    Significant correlations have been found between colour of nectaries and mean values of variety-groups. The potential values of non-European varieties for purposes of commercial production could be forecasted from the point of view of quality, ecological, pomological as well as market value. It is important, however, to know the effect of the rootstock and growing site as well as their interaction, on the one hand, whereas the resistance or tolerance of the varieties as limiting factors, at least to the sharka (Plum pox) virus, Xanthomonas pruni, on the other hand (cf. Surányi & Erdős, 2004a and 2004b).

  • Book review
    37-39.
    Views:
    156

    Plum is a significant temperate fruit and a very important fruit species in Hungary as well. Cultivation has moved beyond the area boundaries of the Northern Hemisphere many centuries ago. Domestic (European) plum production has been particularly affected by the pandemic-scale destruction of the Sharka virus and worldwide breed changes. According to FAOSTAT (2016) data, world plum production is 12 million tones, with 36% from Eurasian, 63% from Japan and other Asian varieties. The share of American plums is only 1%. Domestication and dissemination of plums is „multi-stepped” because homemade (taste) plums are hybrids of two nature species in the first place, but Japanese plums (hybrids with Chinese plums or Prunus cerasifera) are not uniform; the role of the American plum species is much smaller, though their prospects cannot to predict with certainly. The book consists of 19 chapters, finding a complex way of summing up linguistic, historical, floristic, historical-botanical, cultivation, and morphological and anatomical knowledge.

  • Rootstock evaluation in intensive sweet cherry (Prunus avium L.) orchard
    7-12.
    Views:
    202

    During 2000 and 2007, rootstocks of different vigor have been tested in a high density sweet cherry orchard with 'Vera '® and 'Axel'® cultivars at 4 x 2 meter row and plant distance. Trees are trained to Hungarian Spindle with permanent basal branches; in the alley way naturally grown grass is managed by mowing. The first considerable fruiting was in 2004. Every year we measured trunk and canopy parameters of the trees, productivity and fruit size. Our conclusion is that the rootstocks considerably affected the growth, precocity, as well as tree and orchard productivity, fruit weight of sweet cherry cultivars, but these rootstock effects are modified by cultivars, except for growth vigor. According to our results Cema, SL 64, and Bogdany are vigorous rootstocks, moderate vigorous are MaxMa 97, Pi-Ku I , and Tabel® Edabriz, Gisela® 5 and Prob are dwarfing rootstocks. Besides the precocious Gisela® 5 also mahaleb rootstocks CEMA, Bogdany and SL 64 showed considerable precocity, which can be explained by the larger bearing surface to the time of turning to bearing, and a similar or relative large density of burse shoots on fruiting branches. Cumulative yield of 'Axel'® was the highest on Bogdany and on Cerna, contrary to Gisela® 5, which produced only 50% of the previous ones. Cumulative yield of 'Vera'® was the highest on SL 64, and no significant difference was found, compared to trees on rootstocks Cema, Bogdany and Pi-Ku I . Cumulative yield production of trees was smaller on Gisela® 5, Prob, Max Ma 97 and Tabel® Edabriz rootstocks. Corresponding to the literature data of yield efficiency calculated on TCSA basis was highest on Gisela® 5 rootstock. but the efficiency calculated on canopy volume of 'Axel•® trees was similarly high on CEMA and Bogdany, and that of 'Vera'® trees relatively high on CEMA, Bogdany, SL 64 and PiKu I rootstocks. When calculating orchard efficiency al spacing 4 x 2 meters (1250 tree/ha), we received highest yield values on Bogdany, CEMA, SL 64, and PiKu I rootstocks, with large fruit weight. Rootstocks also affect fruit weight. We measured the largest fruit weight on trees on Bogdany.

  • Variability and differences of growth vigour in the set of 36 genotypes of apricot (Prunus armeniaca L.).
    30-34.
    Views:
    122

    Growth vigour of 36 apricot cultivars and new hybrids grafted on apricot seedling rootstock (Prunus armeniaca L.) was evaluated on the base of measurements of stem girth from the 411' to the 10th year after planting. There were differences in growth vigour of genotypes under study. In the evaluated set of genotypes the control cultivar 'Veecor may be classified as a genotype with below-average growth vigour. Only four genotypes (-Reale d'Imola-, Sanagian -Moldavskii krupnoplodnyl and 'LE-2385') were found with significantly higher growth vigour than that of control cultivar 'Veecot' in years of the end of experimental period. Two genotypes (Farmingdale', -LE-SE0-24') were found with significantly higher growth vigour only at the beginning of experimental period and one cultivar ('Vivagold-) with significantly lower growth vigour in the first four years. Genotypes with different growth vigour can be used in further breeding programmes and/or as components inhibiting or supporting the growth in indirect vegetative propagation. Within the whole experimental period, the rank of growth vigour of genotypes practically did not change. This was demonstrated by highly significant or significant coefficients of correlation existing between individual pairs of years (r=0.32+ to r=0.96++). As far as the time difference between years in individual pairs of years was higher, the correlation coefficients were lower. In individual years, variability of growth vigour was relatively low and ranged from 9.83 to 13.64%.