Search

Published After
Published Before

Search Results

  • Ecotoxicology of Copper in Horticultural Soils: A Review
    7-18.
    Views:
    276

    Nowadays, the world is facing the problem of environmental pollution because of the increase of man’s needs requires development in life activities, progress industrialization, transportation tools, enhancement of agriculture and exploitation of natural resources. Soil and water resources are extremely exposed to pollution from different aspects. Agrochemicals in particular, have created severe problems, since they release thousands of chemicals to the environment. Several studies on the effect of environmental pollutants on agroecosystem have been carried out. On the other hand, the importance of trace elements as environmental pollutants is well known and well documented in literature. Cu contamination to agricultural soils has been accelerated due to its wide and repeated use in agriculture and horticulture as fertilizers or fungicides to protect vines, citrus trees, and other fruit crops against fungus diseases. Applied Cu from different agrochemical sources to agroenvironment may be adsorbed and are transported to the groundwater table and pollute it besides polluting the soils. The use of Cu-based fungicides in vineyard soils is widely documented worldwide. It has been found that many countries contain concentrations in excess of 100 mg kg−1. Importance of study of transport of Cu arises due to the fact that Cu is absorbed in soils and also reaches the groundwater table, thus polluting both soil and ground water. It is often more important to be able to estimate the mobile fraction, the readily soluble fraction, the exchangeable fraction, or the plant available fraction of Cu content of a soil as a more direct indication of the likelihood of deleterious or toxic effects on soils and groundwater. Therefore, the aim of present work was to highlight the behavior and ecotoxicological effects of copper on horticultural soils.

  • In vitro comparative study of two Arundo donax L. ecotypes’ selenium tolerance
    119-122.
    Views:
    286

    Selenium tolerance of two somatic embryo-derived Arundo donax L. ecotypes (Blossom, 20SZ) were compared in in vitro culture. Sodium-selenate (1 – 100 mg L-1) as known the most phytoavailable selenium form and the less studied red elemental nanoselenium (100 mg L-1) were applied as selenium treatments. Basis on the results Blossom ecotype seemed to be more sensitive to the sodium-selenate than 20SZ. Inhibiting effect of selenate was effectuated above 10 mg L-1 in case of Blossom, which was manifested in decreased survival rate and growing parameters. Contrast to this 20SZ could tolerate the selenate ≤ 20 mg L-1 without any toxic symptoms. Lower selenate tolerance of Blossom could be explained with higher selenium accumulation. Both of two ecotypes could also uptake and accumulate the red elemental nanoselenium however in much less extent compared to selenate.

  • Boistimulator effect of stress tolerant rhizobacteria on horticultural models
    83-87.
    Views:
    186

    The tolerant bacteria for abiotic stresses such salinity, drought, and different pH have been used as a good tool to improve plant growth in sustainable agriculture. A pot experiment was conducted to evaluate the potential of isolated stresstolerant bacteria for red mud-polluted soil on growth performance of giant reed plants with increasing concentrations of NaCl 0.0; 0.1; 0.2; 0.3; 0.5; 1.0% under gnotobiotic conditions. At the same time biostimulator potential of isolated bacteria was observed in case of radish in vitro germination experiment under salt stress. It was found that the observed bacterial strain can tolerate the salt and pH moderately however it is resistant against hydrogen-peroxide caused oxidative stress in high concentration (up to 2640 mM). Molecular identification, basis on 16S rDNA showed 98% similarity to the Bacillus aryabhattai bacterial strain. The isolated strain alleviated the negative effect of salt (0.05%) for the radish seed germination. However in higher salt concentration (≥0.1%) the bacterial mitigating effect vanished. The inhibition of increasing salt concentration for giant reed plantlets was also alleviated by halotolerant bacteria treatment (≥0.5%).

  • Effects of Foliar Nutrition on Onion Seed Storage under Controlled Atmosphere
    101-110.
    Views:
    203

    Storage of fresh fruits and vegetables prolongs their usefulness. The principal goal of storage is to preserve the commodity in its most useable form for the consumer. The extension of storage life and the improvement of quality of fresh fruits and vegetables can be supplied by harvesting at proper maturity, control of post-harvest diseases, chemical treatments, refrigeration, controlled and modified atmospheres. Two successive winter seasons of 2008/2009 and 2009/2010 were conducted under sandy soil conditions to study the effect of spraying with 12 commercial compounds on onion seeds and storage under controlled atmosphere. The germination percentages were 85.50, 86.85, 83.75 and 82.15 for CA1, CA2, CA3 and CA4, respectively. Water content of onion seeds was significantly increased with decreasing storage temperature in all controlled atmospheres. Water content values were 4.48, 4.40, 4.55 and 4.54 for CA1, CA2, CA3 and CA4, respectively. There were significant decreases in water content with increasing exposure periods. The lowest water content was recordednfor the exposure periods of 120 and 240 days. Catalase and peroxidase activities were decreased with the decreasing of storage temperature, whereas malondialdehyde content was increased. The exposure for 120 days recorded the highest catalase activity. The highest value of peroxidase (11.72) was recorded for CA2. Peroxidase activity increased as exposure period increased until 120 days and then decreased. Cold storage temperature (5°C) showed the highest malondialdehyde content followed by room temperature. The CA2 showed the lowest malondialdehyde content compared with other controlled atmospheres. The exposure period of 120 days had the lowest malondialdehyde content.

  • Effects of Foliar Nutrition on Onion Seed Storage under Modified Atmosphere Packages
    93-100
    Views:
    198

    Modified atmosphere packaging (MAP) and controlled atmosphere storage techniques to reduce the oxygen around the food are largely used for the preservation of fresh produce. There have been great technological advances in this area of preservation, particularly as it refers to improving the quality and shelf-stability of highly perishable food products, such as produce. Two successive winter seasons of 2008/2009 and 2009/2010 were conducted under sandy soil conditions to study the effect of spraying with 12 commercial compounds on onion seeds storage under modified atmosphere packages. Germination percent of seeds decreased in 5°C than storage in room temperature. Germination percent of seeds was gradually decreased with increasing the storage period. Packaging treatments had a significant effect on germination percent of seeds. All the packaging treatments had the higher germination percent than the paper package (control). The highest germination percent after 12 months of storage was recorded for the treatment with non perforated polypropylene in room temperature and polyethylene and non perforated polypropylene in 5°C. Catalase activity decreased with the prolongation of storage period. The non perforated polypropylene package had the highest catalase activity. The treatment with non perforated polypropylene had the highest catalase activity after 12 months of storage in both room and 5°C temperatures. Peroxidase activity of seeds was gradually decreased with increasing the storage period. The highest peroxidase activity after 12 months of storage was recorded in non perforated polypropylene in both storage temperatures.

  • Effect of Foliar Nutrition on Post-Harvest of Onion Seed under Sandy Soil and Saline Irrigation Water Conditions
    85-92
    Views:
    222

    Foliar application has been determined to be an effective nutrients delivery strategy in vegetable and fruits. The enhancement of vegetable and fruit yields affected by foliar nutrients application has been recognized in previously conducted studies with perennial tree crops. The efficiency of foliar nutrition is dependent on soil, climate, fertilizer and the amount of nitrogen used. There is no sufficient information concerning cooperation of foliar nutrition with all nutrients form as well as the rates of these nutrients fertilization in vegetable
    and fruit crops. Two successive winter seasons of 2008/2009 and 2009/2010 were conducted under sandy soil conditions to study the effect of spraying with 12 commercial compounds on inflorescences diameter, flower stalk length, number of seed stem /plant, weight of 1000 seed, germination percentage, seed yield, moisture content, catalase , peroxidase activity and malondialdehyde content of onion seeds. The plants
    sprayed with union Zn, union Mn, union feer, shams k, elga 600, boron, and amino x had the highest vegetative growth parameter, germination percent and enzyme activity. The plants sprayed with union Zn, union feer, shams K, magnesium, caboron, hummer and amino X had the highest seed yield ha-1. The seeds were stored for one year to study the effect of different commercial compounds and storage temperatures on germination, moisture content and change in antioxidant enzymes activities of onion seeds during the storage period. Storage at cold temperature showed higher germination percent, moisture content and lower malondialdehyde content than storage at room temperature. The treatment with union Zn, union feer, union Mn, boron, elga 600, caboron, amica, hummer and amino x had the highest germination percent.

  • Foliar Nutrition and Post-Harvest of Onion Seed: Effects of storage temperatures, storage period and foliar nutrition
    29-47.
    Views:
    202

    The aim of onion bulb storage is to meet consumer demand for extended availability of onions whilst maintaining product quality. The principal biological factors leading to onion bulb deterioration are respiration, resumption of growth and pathogen attack. In onion bulbs a dormant period, when sprouting and rooting cannot be induced, is followed by a period of internal changes that prepare the bulb for breaking of dormancy and subsequent growth. Out of storage, the bulb then proceeds towards flowering and seed production. Two successive winter seasons of 2008/2009 and 2009/2010 were conducted under sandy soil conditions to study the effect of spraying with 12 commercial compounds on yield and yield components of onion seeds and storage The seed yield of each commercial compounds plot from previous experiment was divided into two groups, storage under room temperature and 5°C. Seeds transferred immediately after drying to Increasing Export Competition of Some Vegetable Crops Project Laboratory located in Faculty of Agriculture, Cairo University. The effects of storage temperature, storage period and foliar with some commercial compounds on onion seed quality were considered. Storage in 5°C had the higher germination percentage than storage in room temperature. Results indicated that as storage period increased the germination percent decreased. The treatment with boron or amica in the first season had the highest germination percentage. While, the treatment with union Zn, union feer, union Mn, boron, elga 600, caboron, amica, hummer or amino X had the highest germination percentage in the second season. Storage in 5°C resulted in higher moisture content than storage in room temperature. Regarding the effect of storage period on moisture content, the water content was significantly increased with prolongation of storage period. The lowest values of water content were recorded for treatments with union feer, shams K or boron in the first season, and union feer, shams K, boron, magnesium, shetocare or hummer in the second one. Catalase activity was significantly decreased as storage period increased. The treatment with shams K, boron, shetocare or amino X had the highest catalase activity in both seasons. Peroxidase activity was significantly decreased as storage period increased. Foliar application with boron had the highest peroxidase activity in both seasons. Seed stored in room temperature had the higher malondialdehyde content than those stored in 5°C in the second season. The malondialdehyde content increased as storage period increased. The treatment with magnesium, caboron and the control in the first season, and the treatment with magnesium and the control in the second season had the highest malondialdehyde content.