Articles

Linking bark anatomy to Eucalyptus Physiological Disorder (EPD) in commercial clones

Published:
2025-07-08
Authors
View
Keywords
License

Copyright (c) 2025 International Journal of Horticultural Science

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

How To Cite
Selected Style: APA
Picoli, E., Jacomini, F., Ladeira, J., Almeida, M. N., Vidaurre, G., Moulin, J., Zauza, E., Guimarães, L., Isaias, R. M., Balmant, K., & da Costa, W. (2025). Linking bark anatomy to Eucalyptus Physiological Disorder (EPD) in commercial clones. International Journal of Horticultural Science, 31(1), 73-87. https://doi.org/10.31421/ijhs/31/2025/15419
Abstract

Abiotic stresses trigger the Eucalyptus Physiological Disorder (EPD) which poses a threat to planted and native stands. This research seeks links between eucalyptus bark histological features and EPD, in which the descriptive bark anatomy and histochemistry are approached. Barks from 5-year eucalyptus trees, from commercial clones of E. grandis, E. urophylla and its hybrids, were collected at breast height (DBH), and 50% and 75% of the commercial height, and evaluated. The eucalyptus bark consisted of a periderm (or rhytidome) and a secondary phloem with conspicuous solitary sieve tube elements (STE). The outer bark revealed a secondary phloem with collapsed STE, whereas its inner counterpart displayed non-collapsed STEs. A region crowded with calcium oxalate (CaOx) crystals in axial parenchyma, covering the non-collapsed and partially overlapped collapsed secondary phloem, was observed. Eucalyptus barks exhibited similar anatomical organization at DBH, 50% and 75% of the commercial height, irrespective of expected EPD phenotype or scores. Notwithstanding, there are qualitative differences that are associated with the proportion of non-collapsed phloem and phloem with crystals, which were higher in the tolerant clones and in trees with score 0. The more resistant clones or samples with lower EPD scores exhibited a higher proportion of the regions of living phloem, phloem with CaOx crystals, and non-collapsed phloem. These results support the hypothesis that an increased proportion of STE collapse will occur concurrently with elevated EPD scores and are the basis for an ongoing histometric approach.  

References
  1. ABARES, Australian Bureau of Agricultural and Resource Economics and Sciences. (2019): Australian forest profiles: Eucalypt, Australian Bureau of Agricultural and Resource Economics and Sciences, Canberra, DOI: 10.25814/5d9167d34241f. https://www.agriculture.gov.au/sites/default/files/abares/forestsaustralia/publishingimages/forest%20profiles%202019/eucalypt/AusForProf_2019_Eucalypt_v.1.0.0.pdf Accessed in 20 April, 2024.
  2. Alfenas, A. C., Zauza, E. A. V., Mafia, R.G., de Assis, T. F. (2009): Clonagem e Doenças do Eucalipto. 2ª Edition, UFV Press, Viçosa, 500p
  3. Almeida, M. N. F., Picoli, E. A. T., Moulin, J. C., Guimarães, L. M. S., Zauza, E. A. V., Loos, R. A., Hall, K. B., Gomes, D. S., Conceição, G. J., Rodrigues, P. D., Vidaurre, G. B. (2020): Propriedades da madeira como potenciais biomarcadores de tolerância a distúrbios fisiológicos: comparação de genótipos de eucalipto divergentes. Scientia Forestalis, 50: e3864. https://doi.org/10.18671/scifor.v50.22
  4. Alves, F.C., Balmant, K.M., Resende Jr, M.F.R., Kirst, M., de los Campos, G. (2020): Accelerating Forest tree breeding by integrating genomic selection and greenhouse phenotyping. The Plant Genome, 13(3): e20048. https://doi.org/10.1002/tpg2.20048
  5. Andrade Bueno, I. G., Picoli, E. A. T., dos Santos Isaias, R. M., Lopes-Mattos, K. L. B., Cruz, C. D., Kuki, K. N., Zauza, E. A. V. (2020): Wood anatomy of field grown eucalypt genotypes exhibiting differential dieback and water deficit tolerance. Current Plant, 22: 100136. https://doi.org/10.1016/j.cpb.2020.100136
  6. Angyalossy, V., Pace, M. R., Evert, R.F., Marcati, C. R., Oskolski, A.A., Terrazas, T., Kotina, E., Lens, F., Mazzoni-Viveiros, S. C., Angeles, G., Machado, S. R., Crivellaro, A., Rao, K. S., Junikka, L., Nikolaeva, N., Baas, P. (2016): IAWA List of Microscopic Bark Features. IAWA Journal, 37(4): 517-615. 10.1163/22941932-20160151
  7. Beneteau, J., Renard, D., Marché, L., Douville, E., Lavenant, L., Rahbé, Y., Dupont, D., Vilaine, F., Dinant, S. (2010): Binding properties of the N-acetylglucosamine and high-mannose N-glycan PP2-A1 phloem lectin in Arabidopsis. Plant Physiology, 153(3): 1345-1361. 10.1104/pp.110.153882
  8. Brando, P. M., Nepstad, D. C., Balch, J. K., Bolker, B., Christman, M. C., Coe, M., Putz, F. E. (2012): Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology, 18: 630-641. https://doi.org/10.1111/j.1365-2486.2011.02533.x
  9. Burrows, G. E. Connor, C. (2020): Chloroplast Distribution in the Stems of 23 Eucalypt Species. Plants, 9(12), 1814. 10.3390/plants9121814
  10. Caetano-Madeira, D. D., Omena-Garcia, R. P., Elerati, T.L., da Silva Lopes, C. B., Corrêa, T. R., de Souza, G. A., Oliveira, L. A., Cruz, C.D., Bhering, L. L., Nunes-Nesi, A., Costa, W. G., Picoli, E. A. T. (2023): Metabolic, Nutritional and Morphophysiological Behavior of Eucalypt Genotypes Differing in Dieback Resistance in Field When Submitted to PEG-Induced Water Deficit. Agronomy, 13(5), 1261. https://doi.org/10.3390/agronomy13051261
  11. Câmara, A. P., Oliveira, J. T. S., Bobadilha, G. S., Vidaurre, G. B., Tomazello Filho, M., Soliman, E. P. (2018): Physiological disorders affecting dendrometric parameters and Eucalyptus wood quality for pulping wood. Cerne, 24(1), 27-34. 10.1590/01047760201824012480
  12. Cernusak, L. A., Cheesman, A. W. (2015): The benefits of recycling: How photosynthetic bark can increase drought tolerance. New Phytologist, 208: 995–997. https://doi.org/10.1111/nph.13723
  13. Ciesla, W. M., Donaubauer, M. E. (1994): Decline and Dieback of Trees and Forests: A Global Overview. FAO Forestry Paper, n. 120. FAO, Rome.
  14. Condé, S. A., Picoli, E. A. T., Corrêa, T. R., dos Santos Dias, L. A., Lourenço, R. D. S., dos Santos Silva, F. C., Pereira, W. L., Zauza, E. A. V. (2020): Biomarkers for early selection in eucalyptus tolerant to dieback associated with water deficit. Revista Brasileira de Ciências Agrárias, 15(3): e7515. 10.5039/agraria.v15i3a7515
  15. Condé, S. A., Picoli, E. A. T., Corrêa, T. R., Lourenço, R. D. S. (2020): Marcadores anatômicos do pecíolo e a tolerância à seca de ponteiros e ao déficit hídrico em eucalipto. Nativa, 8(4): 591-596. 10.31413/nativa.v8i4.8702
  16. Corrêa, T. R., Picoli, E. A. T., Pereira, W. L., Condé, A. S., Resende, R. T., de Resende, M. D. V., da Costa, W. G., Cruz, C. D., Zauza, E. A. V. (2023): Very early biomarkers screening for water deficit tolerance in commercial Eucalyptus clones. Agronomy, 2023, 13(3): 937. https://doi.org/10.3390/agronomy13030937
  17. Corrêa, T. R., Picoli, E. A. T., Souza, G. A., Condé, S. A., Silva, N. M., Lopes-Matos, K. L., Resende, M.D.V., Zauza, E.A.V., Oda, S. (2017): Phenotypic markers in early selection for tolerance to dieback in Eucalyptus. Industrial Crops and Products, 107: 130–138. http://dx.doi.org/10.1016/j.indcrop.2017.05.032
  18. Dias, C. N., Picoli, E. A. T., Souza, G. A., Farag, M. A., Scotti, M. T., Barbosa Filho, J. M., da Silva, M. S., Tavares, J. F. (2017): Phenolics metabolismo provides a tool for screening drought tolerant Eucalyptus grandis hybrids. Australian Journal of Crop Science, 11(8): 1016–1025. doi: 10.21475/ajcs.17.11.08.pne511
  19. Dinant, S., Clark, A. M., Zhu, Y., Vilaine, F., Palauqui, J.-C., Kusiak, C., Thompson, G. A. (2003): Diversity of the Superfamily of Phloem Lectins (Phloem Protein 2) in Angiosperms, Plant Physiology, 131(1): 114–128. doi: 10.1104/pp.013086.
  20. Downes, G. M., Lausberg, M., Potts, B., Pilbeam, D., Bird, M., Bradshaw, B. (2018): Application of the IML Resistograph to the infield assessment of basic density in plantation eucalypts. Australian Forestry, 81(3), 177–185. https://doi.org/10.1080/00049158.2018.1500676
  21. Dutkowski G. W., Potts B. M. (1999): Geographic Patterns of Genetic Variation in Eucalyptus globulus ssp. globulus and a Revised Racial Classification. Australian Journal of Botany, 47, 237-263. https://doi.org/10.1071/BT97114
  22. Fensham, R. J., Holman, J. E. (1999): Temporal and spatial patterns in drought-related tree dieback in Australian savanna. Journal of Applied Ecology, 36 1035–1050.
  23. Ferreira, F. A. (1989): Patologia florestal, Principais doenças florestais no Brasil. Viçosa, Sociedade de Investigações Florestais, Brasil, 570p.
  24. Floyd, M. L., Clifford, M., Cobb, N. S., Hanna, D., Delph, R., Ford, P., Turner, D. (2009): Relationship of stand characteristics to drought-induced mortality in three Southwestern piñon–juniper woodlands. Ecological Applications, 19(5), 1223–1230. 10.1890/08-1265.1
  25. Foelkel, C. E. B. (2005): Casca da árvore do eucalipto: aspectos morfológicos, fisiológicos, florestais, ecológicos e industriais, visando a produção de celulose e papel. In: Foelkel CEB, editor. Eucalyptus OnLine Book & Newsletter [online]: 13–63. Available at: http://www.eucalyptus.com.br/capitulos/capitulo_casca.pdf [accessed 06 February 2023].
  26. Gričar, J., Prislan, P. (2022): Seasonal changes in the width and structure of non-collapsed phloem affect the assessment of its potential conducting efficiency. IAWA Journal, 43(3): 219-233. https://doi.org/10.1163/22941932-bja10084
  27. Grootemaat, S., Wright, I., Bodegom, P., Cornelissen, J., Shaw, V. (2017): Bark traits, decomposition and flammability of Australian forest trees. Australian Journal of Botany, 65(4): 327-338. https://doi.org/10.1071/BT16258
  28. Hua, L. S., Chen, L.W., Antov, P., Kristak, L., Tahir, P. M. (2022): Engineering Wood Products from Eucalyptus spp. Adv. Mater. Sci. Eng., 1: 8000780. https://doi.org/10.1155/2022/8000780
  29. Huang, B. Q., Yeung, E. C. (2015): Chemical and Physical Fixation of Cells and Tissues: An Overview In: E. C. T. Yeung et al. (eds.), Plant Microtechniques and Protocols, Springer International Publishing Switzerland, pp. 23-43.
  30. INDÚSTRIA BRASILEIRA DE ÁRVORES. Relatório Anual IBÁ 2023. (2023): Available at: < https://iba.org/datafiles/publicacoes/relatorios/relatorio-anual-iba2023-r.pdf>. Accessed in, December, 28, 2023.
  31. Jensen, W. A. (1962): Botanical histochemistry: principles and practice. 1st ed., Berkley: W. H. Freeman & Co, 408p.
  32. Johansen, D. A. (1940): Plant microtechnique. New York: McGraw-Hill. 523 p.
  33. Jordan, G. J., Potts, B.M., Clarke, A. (2002): Susceptibility of Eucalyptus globulus ssp. globulus to sawfly (Perga affinis ssp. insularis) attack and its potential impact on plantation productivity. Forest Ecology and Management, 160(1): 189–199. https://doi.org/10.1016/S0378-1127(01)00445-5
  34. Jorge, F., Quilhó, T., Pereira, H. (2000): Variability of fiber length in wood and bark in Eucalyptus globulus. IAWA Journal, 21(1): 41– 48. DOI:10.1163/22941932-90000235
  35. Knoblauch, M., Oparka, K. (2012): The structure of the phloem--still more questions than answers. Plant Journal, 70(1): 147-56. DOI: 10.1111/j.1365-313X.2012.04931.x
  36. Landsberg, J. (1985): Drought and dieback of rural eucalypts. Australian Journal of Ecology, 10: 87–90. https://doi.org/10.1111/j.1442-9993.1985.tb00868.x
  37. Lima, L., Miranda, I., Knapic, S., Quilhó, T., Pereira, H. (2018): Chemical and Anatomical Characterization, and Antioxidant Properties of Barks from 11 Eucalyptus Species. European Journal of Wood and Wood Products, 76: 783–792. https://doi.org/10.1007/s00107-017-1247-y
  38. Lison, L. A. (1960): Histochemie et cytochemie animales: principles et méthodes. Paris: Gaulthier Villars. 606p.
  39. Matusick, G., Ruthrof, K. X., Hardy, G. S. J. (2012): Drought and heat triggers sudden and severe dieback in a dominant mediterranean-type woodland species. Open Journal of Forestry, 2(4): 183-186. DOI:10.4236/ojf.2012.24022
  40. Miranda, I., Lima, L., Quilhó, T., Knapic, S., Pereira, H. (2016): The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Industrial Crops and Products, 82: 81–87. https://doi.org/10.1016/j.indcrop.2015.12.003
  41. Miranda, I., Pereira, H. (2015): Variation of wood and bark density and production in coppiced Eucalyptus globulus trees in a second rotation. iForest, 9(2): 270-275. https://doi.org/10.3832/ifor1442-008
  42. Moulin, J. C., de Souza Ribeiro, D., Vidaurre, G.B., Braga Mulin, L., Moreira, S. I. (2022): Effect of drought stress on the formation and lignification of eucalyptus wood cells. IAWA Journal, 43(3): 263-275. https://doi.org/10.1163/22941932-bja10092
  43. Mueller-Dombois, D. (1986): Perspectives for an etiology of stand-level dieback. Annual Review of Ecology, Evolution, and Systematics, 17: 221–243. https://doi.org/10.1146/annurev.es.17.110186.001253
  44. Nascimento, D. L., Aguiar, V.P., Jacomini, F. A., Costa, E. G., Ribeiro, W. S., Domokos-Szabolcsy, E., Kleine, A. A., Balmant, K. M., Picoli, E. A. T., Zauza, E. A. V., Guimarães, L. M. S. (2024): Rapid detection of bromatological and chemical biomarkers of clones tolerant to eucalyptus physiological disorder. South African Journal of Botany, 175: 684-695. https://doi.org/10.1016/j.sajb.2024.10.052
  45. Nickolas, H., Williams, D., Downes, G., Harrison, P.A., Vaillancourt, R. E., Potts, B. M. (2020): Application of resistance drilling to genetic studies of growth, wood basic density and bark thickness in Eucalyptus globulus. Australian Forestry, 83(3): 172-179. https://doi.org/10.1080/00049158.2020.1808276
  46. O’Brien, T. P., Feder, N., McCully, M. E. (1964): Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59(2), 368-373. https://doi.org/10.1007/BF01248568
  47. Paludeto, J. G. Z., Bush, D., Estopa, R. A., Tambarussi, E. V. (2020): Genetic control of diameter and bark percentage in spotted gum (Corymbia spp.): can we breed eucalypts with more wood and less bark? Southern Forests, 82(1): 86-93. https://doi.org/10.2989/20702620.2020.1733771
  48. Picoli, E. A. T., de Resende, M. D. V., Oda, S. (2021): Come Hell or High Water: Breeding the Profile of Eucalyptus Tolerance to Abiotic Stress Focusing Water Deficit. In: Gupta, D.K., Palma, J.M. (eds) Plant Growth and Stress Physiology. Plant in Challenging Environments, vol 3. Springer, Cham. pp. 91-127. https://doi.org/10.1007/978-3-030-78420-1_5
  49. Pupin, S., Zaruma, D.U.G., de Souza, C. S., Cambuim, J., Coleto, A. L., Alves, P. F., Pavan, B. E., de Moraes, M. L. T. (2017): Genetic parameters for growth traits, bark thickness and basic density of wood in progenies of Eucalyptus urophylla S.T. Blake. Scientia Forestalis, 45(115), 455-465. DOI: dx.doi.org/10.18671/scifor.v45n115.04
  50. Quilhó, T., Pereira, H., Richter, H. G. (1999): Variability of bark structure in plantation-grown Eucalyptus globulus. IAWA Journal, 20(2): 171-180. https://doi.org/10.1163/22941932-90000677
  51. Ramirez, M., Rodriguez, J., Balocchi, C., Peredo, M., Elissetche, J. P., Mendonca, R., Valenzuela, S. (2009): Chemical composition and wood anatomy of Eucalyptus globulus clones: variations and relationships with pulpability and hand sheet properties. Journal of Wood Chemistry and Technology, 29: 43–58. https://doi.org/10.1080/02773810802607559
  52. Ray, D. M., Savage, J. A. (2021): Seasonal changes in temperate woody plant phloem anatomy and physiology: implications for long-distance transport. AoB Plants, 13(4): plab028. https://doi.org/10.1093/aobpla/plab028
  53. Ridoutt, B. G., Sands, R. (1993): Within-tree variation in cambial anatomy and xylem cell differentiation in Eucalyptus globulus. Trees, 8: 18–22. https://doi.org/10.1007/BF00240977
  54. Rodrigues, A. C. P. (2020): Perfil de expressão gênica em híbridos de Eucalyptus grandis x Eucalyptus urophylla afetados pelo distúrbio fisiológico do eucalipto (DFE), PhD Thesis, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
  55. Rodrigues, B. P., da Silva Oliveira, J. T., Demuner, B. J., Mafia, R. G., Vidaurre, G. B. (2022): Chemical and Kraft Pulping Properties of Young Eucalypt Trees Affected by Physiological Disorders. Forests, 13(4), 504. https://doi.org/10.3390/f13040504
  56. Rosell, J. A. (2016): Bark thickness across the angiosperms: more than just fire. New Phytologist, 211(1): 90–102. https://doi.org/10.1111/nph.13889
  57. Sartori, C., Mota, G. S., Ferreira, J., Miranda, I., Mori, F. A., Pereira, H. (2016): Chemical characterization of the bark of Eucalyptus urophylla hybrids in view of their valorization in biorefineries. Holzforschung 70, 1–10. https://doi.org/10.1515/hf-2015-0258
  58. Stanturf, J. A., Vance, E. D., Fox, T. R., Kirst, M. (2013): Eucalyptus beyond its native range: environmental issues in exotic bioenergy plantations. International Journal of Forestry Research, 2013(1): 463030. https://doi.org/10.1155/2013/463030
  59. Subasinghe, Y., Volkova, L., Filkov, A., Weston, C. (2022): Effect of bark properties on the cambium cell viability of Eucalyptus species under low radiative heat exposure. Forest Ecology Management, 521: 120443. https://doi.org/10.1016/j.foreco.2022.120443
  60. Tooulakou, G., Giannopoulos, A., Nikolopoulos, D., Bresta, P., Dotsika, E., Orkoula, M. G., Kontoyannis, C. G., Fasseas, C., Liakopoulos, G., Klapa, M. I., Karabourniotis G. (2016): Reevaluation of the plant “gemstones”: Calcium oxalate crystals sustain photosynthesis under drought conditions. Plant Signaling & Behavior, 11(9): e1215793 https://doi.org/10.1080/15592324.2016.1215793
  61. Vidal, B. D. C. (1977): Acid glycosaminoglycans and endochondral ossification: microspectrophotometric evaluation and macromolecular orientation. Cellular and Molecular Biology, 22(1): 45-64.
  62. Vieira Rocha, M. F., Pereira, B., Oliveira, A., Pego, M., Veiga, T., Carneiro, A. (2018): Influence of plant spacing on the bark properties of a eucalyptus clone. Rev. Árv., 42(5): e420501. https://doi.org/10.1590/1806-90882018000500001
  63. Walden, L. L., Fontaine, J. B., Ruthrof, K. X., Matusick, J., Harper, R. J., Hardy, G. E. S. J. (2019): Carbon consequences of drought differ in forests that resprout. Global Change Biology, 25(5): 1653-1664. https://doi.org/10.1111/gcb.14589
  64. Wei, X., Borralho, N. M. G. (1997): Genetic control of wood basic density and bark thickness and their relationships with growth traits of Eucalyptus urophylla in south east China. Silvae Genetica, 46(4): 245- 250.
  65. Wei, X., Borralho, N. M. G. (2000): Genetic gains and levels of relatedness from best linear unbiased prediction selection of Eucalyptus urophylla for pulp production in southeastern China. Canadian Journal of Forest Research, 30: 1601–1607. https://doi.org/10.1139/x00-092
  66. Wesolowski, A., Adams, M., Pfautsch, S. (2014): Insulation capacity of three bark types of temperate Eucalyptus species. Forest Ecology and Management, 313: 224–232. 10.1016/j.foreco.2013.11.015. https://doi.org/10.1016/j.foreco.2013.11.015
Database Logos
DOAJ ProQuest MTMT MTA EBSCO CROSSREF EPA BASE OpenAire Index Copernicus Vrije Universiteit Amsterdam