Search
Search Results
-
The utilization strucutre of thermal water wells and its unexploited capacities in Hungary
36-52Views:74In order to mitigate Hungary’s vulnerability in energy supply and accomplish the renewable energy production targets, it is essential to discover exploitable alternative opportunities for energy production and step up the utilization of the available capacities. The purpose of this publication is to map up the utilization structure of the existing Hungarian thermal water wells, describe its changes over the past 16 years, reveal the associated reasons and define the unutilized well capacities that may contribute to increasing the exploitation of geothermal heat by municipalities. The studies have been conducted in view of the Cadaster of Thermal Water Wells of Hungary compiled in 1994, the well cadasters kept by the regional water management directorates, as well as the data of the digital thermal water cadaster of 2010. The calculations performed for the evaluation of data have been based on the ratios and respective utilization areas of the existing wells. In the past 150 years, nearly 1500 thermal water wells have been drilled for use by a broad range of economic operations. The principal goals of constructing thermal water wells encompass the use of water in balneology, water and heat supply to the agriculture, hydrocarbon research and the satisfaction of municipal water demands. In 1994, 26% of the facilities was operated as baths, 21% was used by agriculture, while 13% and 12% served communal and waterworks supply, respectively. Then in 2010, 31% of thermal water wells was continued to be used for the water supply of bathing establishments, followed by 20% for agricultural use, 19% for utilization by waterworks, 11% for observation purposes and 10% for communal use. During the 16 years between 1994 and 2010, the priorities of utilization often changed, new demands emerged in addition to the former utilization goals of thermal water wells. The economic landscape and changes in consumer habits have transformed the group of consumers, which is the reason why most of the resources have remained untapped. In 2010, 13% of all the thermal water wells were closed in, but could potentially be utilized; these capacities could be deployed for the satisfaction of the heat demands of municipal public institutions.
-
Mapping of river waterquality using inverse distance weighted interpolation in Ogun-Osun river basin, Nigeria
48-62Views:784Sustainable management of water resources involves inventory, conservation, efficient utilization, and quality management. Although, activities relating to quantity assessment and management in terms of river discharge and water resources planning are given attention at the basin level, water quality assessment are still being done at specific locations of major concern. The use of Geographical Information System (GIS) based water quality information system and spatial analysis with Inverse Distance Weighted interpolation enabled the mapping of water quality indicators in Ogun and Ona catchment of Ogun-Osun River Basin, Nigeria. Using 27 established gauging stations as sampling locations, water quality indicators were monitored over 12 months covering full hydrological season. Maps of seasonal variations in 10 water quality indicators as impacted by land-use types were produced. This ensured that trends of specific water quality indicator and diffuse pollution characteristics across the basin were better presented with the variations shown along the river courses than the traditional line graphs. The production of water quality maps will improve monitoring, enforcement of standards and regulations towards better pollution management and control. This strategy holds great potential for real time monitoring of water quality in the basin with adequate instrumentation.
-
Assessment of spatio-temporal waterline changes of a reservoir: A case study of Ujjani wetland, Maharashtra, India
1-13Views:133The Ujjani reservoir is an artificial inland wetland and a potential Ramsar site in Maharashtra, India. The present study investigates the changes in the surface water area over time using remote sensing imageries (LANDSAT, LISS-III, Sentinel 2 series) for four decades (1981 to 2021) and the normalized difference water index (NDWI). The study reveals that the overall mean amount and rate of decrease in the surface water area are estimated at 20.50% (44.31 + 30.38 km2) and 0.75% year-1 (1.62 + 1.36 km2year-1), respectively. Furthermore, multiple correlation matrix analysis shows a strong positive correlation between surface water area and rainfall while a weak negative correlation with mean annual temperature (TMAX). Thus, indicating rainfall as the principal factor in inducing changes to the surface water area of the Ujjani wetland. However, the study also finds that the impact of the dramatic rise in population growth and anthropogenic activities in the form of overexploitation and land encroachments for agriculture are gradual but significant cursors to wetland degradation. Hence, the study recommends periodic monitoring, management, and conservation of wetlands, by employing stringent policies and effective technological measures.
-
Spatial pattern of soil erosion using RUSLE model and GIS software at the Saf Saf watershed, Algeria
31-47Views:158Soil erosion is one of the problems threatening the Algerian environment. In agriculture, soil erosion leads to the thinning of the topsoil under the effect of the natural erosive forces of water, or under the effect of agricultural activities. The present study aims to estimate average soil loss rate and to identify vulnerable zones. Through the integration of RUSLE model at the Saf Saf watershed, various parameters are utilized such as the rainfall erosivity factor (R), soil erodibility factor (K), slope length - slope factor (LS), crop management factor (C) and practice management factor (P). All these parameters are prepared and processed through a geographic information system (GIS) and remote sensing using various database sources. The results reveal that the river basin has an average annual soil loss of 3.9 t ha−1 yr−1, and annual soil loss of 4.53 million tonnes for the period 1975-2017. Meanwhile, eighty five percent of the study area is experiencing acceptable rate of soil erosion loss, which is ranging between 0 to 5 t ha−1 yr−1. The present study of risk assessment can contribute to understand the spatial pattern of soil erosion in order to use appropriate conservation practices for sustainable soil management.
-
Interpolation and 3D visualization of soil moisture
23-34Views:399Adaptation to climate change demands the optimal and sustainable water management in agriculture, with an inevitable focus on soil moisture conditions. In the current study we developed an ArcGIS 10.4. platform-based application (software) to model spatial and temporal changes in soil moisture in a soy field. Six SENTEK Drill & Drop soil moisture sensors were deployed in an experimental field of 4.3 hectares by the contribution of Elcom Ltd. Soil moisture measurement at each location were taken at six depths (5, 15, 25, 35, 45 and 55 cm) in 60-minute intervals. The model is capable to spatially interpolate monitored soil moisture using the technique. The time sequence change of soil moistures can be tracked by a Time Slider for both the 2D and 3D visualization. Soil moisture temporal changes can be visualized in either daily or hourly time intervals, and can be shown as a motion figure. Horizon average, maximum and minimum values of soil moisture data can be identified with the builtin tool of ArcGIS. Soil moisture spatial distribution can be obtained and plotted at any cross sections, whereas an alarm function has also been developed for tension values of 250, 1,000 and 1,500 kPa.
-
Hydromorphological assessment of the lower Hungarian Drava section and its floodplain
109-116Views:389The hydromorphological properties of rivers and their floodplains receive increased attention both in basic research and water management. A comparison of hydromorphological parameters before and after river regulation (involving floodplain drainage) provides important information for river management, particularly floodplain rehabilitation. The paper assesses a selected reach of the Drava River and the corresponding floodplain utilising two international approaches, the REFORM framework and the Italian Morphological Quality Index.
-
Environment protection and its reflection in the environmental consciousness of the inhabitants in a middle-sized town (Vác, Hungary)
83-94Views:88Abstract The paper presents the role of urban environmental protection in sustainable development while analysing the factors influencing the environmental consciousness of the inhabitants of a middle-sized town based on a general model, together with the role of environmental consciousness in solving environmental protection problems at settlement level. My particular research focused on characterising the environmental state of Vác, with a population of 35000 people, and on the knowledge and environmental consciousness of the inhabitants. In the course of the representative questionnaire survey, 439 people gave assessable answers. Questions were related to the most significant environmental problems (air pollution, water contamination, sewage treatment, waste management). Answers were compared to the real situation based on measurements. Results revealed that the knowledge of the inhabitants on local environmental problems is better than the national average. In certain relations (water contamination, sewage treatment), however, it is deficient, thus information transfer was studied separately as well. It can be stated that local governments should make greater efforts in order to inform inhabitants. Environmental attitude of the inhabitants can be regarded as good. Based on the general model, I analysed the tasks of the settlement to improve environmental consciousness in order to increase efficiency of urban environmental protection.