Search
Search Results
-
Unsupervised classification of high resolution satellite imagery by self-organizing neural network
37-44Views:42The current paper discusses the importance of the modern high resolution satellite imagery. The acquired high amount of data must be processed by an efficient way, where the used Kohonen-type self-organizing map has been proven as a suitable tool. The paper gives an introduction to this interesting method. The tests have shown that the multispectral image information can be taken after a resampling step as neural network inputs, and then the derived network weights are able to evaluate the whole image with acceptable thematic accuracy.
-
Mapping aquatic vegetation of the Rakamaz-Tiszanagyfalui Nagy-Morotva using hyperspectral imagery
1-10Views:189Rapid development in remote sensing technologies provides more and more reliable methods for environmental assessment. For most wetlands, it is difficult to walk-in without disturbing the endangered species living there; therefore, application of opportunities provided by remote sensing has a great importance in population-mapping. One effective tool of vegetation pattern estimation is hyperspectral remote sensing, which can be used for association and species level mapping as well, due to high ground resolution. The Rakamaz-Tiszanagyfalui Nagy-morotva is an oxbow lake, located in the north-eastern part of Hungary. For this study, a wetland area of 1.17 km2 containing the original water bad and shoreline was selected. For the image analysis, images taken by an AISA DUAL system hyperspectral sensor were used. At the same time, 7 main vegetation classes were separated, which are typical for the sample plot designated on the test site. Classification was performed by the master areas signed by the most common associations of the Rakamaz-Tiszanagyfalui Nagy-morotva with determined spectrums. During the image analysis, SAM classification method was used, where radian values were optimized by the results of classification performed at the control area.