Articles

SELECTION OF TEST LOCATIONS FOR THE DEVELOPMENT OF A SMART MAP SUPPORTING THE RESIDENTIAL USE OF RENEWABLE ENERGIES

Published:
November 23, 2023
Authors
View
Keywords
How To Cite
Selected Style: APA
Prof. dr. Boros , A., Anetta, Szántó , E., Prof. Dr. Rohács , J., & Dr.Rohács , D. (2023). SELECTION OF TEST LOCATIONS FOR THE DEVELOPMENT OF A SMART MAP SUPPORTING THE RESIDENTIAL USE OF RENEWABLE ENERGIES. Economica, 14(1-2), 1-23. https://doi.org/10.47282/economica/2023/14/1-2/12859
Abstract

Abstract

In the European Union, the population uses 26% of the energy. Due to the strategic goal of achieving climate neutrality and the crises of recent years, investment in the use of renewable energies has accelerated. In order to support this process, the Circular Economy Analysis Center of the Hungarian University of Agriculture and Life Sciences (MATE) started the development of a so-called multidisciplinary smart map, which shows the possibilities of renewable energy sources that can be used locally, and the selection of the optimal energy production mix based on the location of residential buildings and buildings. The purpose of this article is to present the selection of test sites necessary for the development of the map, highlighting their geographical, meteorological, economic, and social characteristics. Based on the applied multi-criteria system, the selection of testing locations and tasks is a complex task. The investigations are summarized in five chapters. The first one describes the introductory thoughts related to the initiation and development of the project. The second deals with Hungarian residential energy consumption in the light of international data. The third presents the principles of smart map development and defines the criteria for testing locations. And the fourth one analyzes and presents the principles and possibilities of selecting locations. The fifth part summarizes the location selection process, describes the methodology of the applied analyzes and describes the results of the location selection. The described procedure can guide the examination of these factors in other international projects.

References
  1. Árpád, I., Kiss, J. T., Bellér, G., & Kocsis, D. (2021). Sustainability Investigation of Vehicles’ CO2 Emission in Hungary. Sustainability, 13(15), 8237.
  2. Balogh, J. M. (2020). Európai Uniós klímacélok teljesítése – hogy tartunk most? [European Union climate targets - where are we now?]. Budapest: Klímapolitikai Intézet. Retrieved from https://klimapolitikaiintezet.hu/kutatas/europai-unios-klimacelok-hogy-tartunk-most
  3. Bart, I., Csernus, D., & Sáfián, F. (2018). Analysis of climate-energy policies & implementation in Hungary. National Society of Conservationists—Friends of the Earth Hungary: Budapest, Hungary.
  4. Boldizsár, T. (1975). Research and development of geothermal energy production in Hungary. Geothermics, 4(1-4), 44-56.
  5. Boubaker, S., Goodell, J. W., Pandey, D. K., & Kumari, V. (2022). Heterogeneous impacts of wars on global equity markets: Evidence from the invasion of Ukraine. Finance Research Letters, 48, 102934. https://doi.org/10.1016/j.frl.2022.102934
  6. Brodny, J., & Tutak, M. (2020). Analyzing similarities between the European Union countries in terms of the structure and volume of energy production from renewable energy sources. Energies, 13(4), 913.
  7. Cowell, R., Ellis, G., Sherry-Brennan, F., Strachan, P. A., & Toke, D. (2017). Rescaling the governance of renewable energy: lessons from the UK devolution experience. Journal of Environmental Policy & Planning, 19(5), 480-502.
  8. Crotogino, F., Schneider, G. S., & Evans, D. J. (2018). Renewable energy storage in geological formations. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 232(1), 100-114.
  9. Demetrescu, C., Wilhelm, H., Ene, M., Andreescu, M., Polonic, G., Baumann, C., ... & Şerban, D. Z. (2005). On the geothermal regime of the foreland of the Eastern Carpathians bend. Journal of Geodynamics, 39(1), 29-59.
  10. Devine-Wright, P. (2005). Beyond NIMBYism: towards an integrated framework for understanding public perceptions of wind energy. Wind Energy, 8(2), 125-139. DOI: 10.1002/we.124
  11. Dobos, E. (2020). Albedo. In Atmosphere and Climate (pp. 25-28). CRC Press.
  12. Energy Outlook (2023): Surviving the Energy Crisis. The Economist Intelligence Unit Limited 2022. 8.p.
  13. European Parliament. (2021). Regulation (EU) 2021/1119 of the European Parliamnet and of the council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’),
  14. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1119
  15. Fogarassy, C. (2001). Rationalisation of production structure of arable land energycrops in Hungary. Bodenkultur-Wien and Munchen, 52(3), 225-232.
  16. Fogarassy, C., & Horvath, B. (2015). Low-carbon building innovation trends and policy perspectives in Hungary between 2020 and 2030. YBL Journal of Built Environment, 3(2), 17-23.
  17. Gabnai Z. (2021). Az Európai Unió környezetpolitikája, klímavédelmi célú intézkedései – múlt, jelen, jövő [The European Union's environmental policy, climate protection measures - past, present, future]. Dolgozat, Corvinus Egyetem.
  18. Henderson-Sellers, A., & Wilson, M. F. (1983). Surface albedo data for climatic modeling. Reviews of Geophysics, 21(8), 1743-1778.
  19. Hidvégi P, Kopkáné-Plachy J, Müller A (2015). Az egészséges életmód [Healthy lifestyle]. Eszterházy Károly Főiskola, Sporttudományi Intézet, Eger. 81.p. ISBN 978-615-5297-32-8.
  20. Horváth, F., Bada, G., Windhoffer, G., Csontos, L., Dombrádi, E., Dövényi, P., ... & Tóth, T. (2006). A Pannon-medence jelenkori geodinamikájának atlasza: Euro-konform térkép-sorozat és magyarázó [Atlas of the contemporary geodynamics of the Pannonian Basin: Euro-conform map series and explanation]. Magyar Geofizika, 47(4), 133-137.
  21. Hoyk, E., Szalai, Á., Palkovics, A., & Farkas, J. Z. (2022). Policy gaps related to sustainability in Hungarian agribusiness development. Agronomy, 12(9), 2084.
  22. Jafari, M., Bompard, E., Delmastro, C., Botterud, A., & Grosso, D. (2022). Electrify Italy: The role of renewable energy. Gas, 2030, 2050.
  23. Csimázsné, J. T. J., Poór, J., & Hollósy, Z. (2018). Magyarország és a környező Európai Uniós tagországok megújuló energiafelhasználása [Renewable energy use in Hungary and neighboring European Union member states]. Economica, 9(1), 23-29.
  24. Kim, H. J., Kim, J. H., & Yoo, S. H. (2019). Social acceptance of offshore wind energy development in South Korea: Results from a choice experiment survey. Renewable and Sustainable Energy Reviews, 113, 109253. DOI: 10.1016/j.rser.2019.109253.
  25. Kovács Z. (2002). Népesség- és településföldrajz [Population and settlement geography]. Egyetemi jegyzet [University notes]. ELTE Eötvös Kiadó, Budapest
  26. Krug, M., Di Nucci, M. R., Caldera, M., & De Luca, E. (2022). Mainstreaming Community Energy: Is the Renewable Energy Directive a Driver for Renewable Energy Communities in Germany and Italy? Sustainability, 14(12), 7181.
  27. KSH. (2021). Földrajzi adatok, Statadat táblák. Retrieved from https://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_fol001.html (letöltve: 2023. 03.16.)
  28. KSH. (2021). Fenntartható fejlődés indikátorai, Statadat táblák. Retrieved from https://www.ksh.hu/ffi/3-38.html (letöltve: 2023. 03.16.)
  29. KSH. (2021). Fenntartható fejlődés indikátorai, Statadat táblák. Retrieved from https://www.ksh.hu/ffi/3-35.html (letöltve: 2023. 03.16.)
  30. KSH. (2015). Interaktív térképek. Egy lakosra jutó GDP. Retrieved from https://www.ksh.hu/interaktiv/terkepek/mo/gdp.html?mapid=QPT001 (letöltve: 2023. 03.16.)
  31. Liang, S., Strahler, A. H., & Walthall, C. (1999). Retrieval of land surface albedo from satellite observations: A simulation study. Journal of Applied Meteorology, 38(6), 712-725.
  32. Magda, R. (2011). A megújuló energiaforrások szerepe és hatásai a hazai agrárgazdaságban. Gazdálkodás: Scientific Journal on Agricultural Economics, 55(80-2016-905), 575-588.
  33. McGlade, C., Pye, S., Ekins, P., Bradshaw, M., & Watson, J. (2018). The future role of natural gas in the UK: a bridge to nowhere? Energy Policy, 113, 454-465.
  34. Michalkó, G., Lontai-Szilágyi, Z., Kiss, K., & Martonné Erdős, K. (2017). A megújuló energia szerepe a falusi turizmus és a magyarországi falvak modernizációjában. Turizmus Bulletin, 17(1-2), 35-44.
  35. Müller, A., Balatoni, I., Csernoch, L., Bács, Z., Bíró, M., Bendíková, E., ... & Bácsné Bába, É. (2018). Asztmás betegek életminőségének változása komplex rehabilitációs kezelés után. Orvosi Hetilap, 159(27), 1103-1112.
  36. Müller, A., Ráthonyi, G., Bíró, M., Ráthonyi-Ódor, K., Bács, Z., Ács, P., ... & Bábá, É. B. (2018b). The effect of complex climate therapy on rehabilitation results of elderly asthmatic and chronic obstructive airways disease (COPD) patients. European Journal Of Integrative Medicine, 20, 106-114.
  37. Nagy, T.O. (2015). Az Észak-Alföldi régió hátrányos gazdasági helyzetének főbb okai, megújuló energiaforrások hasznosítása, mint lehetséges kitörési pont. Köztes Európa: Társadalomtudományi Folyóirat: A VIKEK Közleményei 7, 26-39. https://ojs.bibl.u-szeged.hu/index.php/vikekke/article/view/12689/12545
  38. Németh, K., Birkner, Z., Katona, A., Göllény-Kovács, N., Bai, A., Balogh, P., ... & Péter, E. (2020). Can Energy Be a “Local Product” Again? Hungarian Case Study. Sustainability, 12(3), 1118.
  39. Németh, K., Péter, E., & Pintér, G. (2018). Megújuló energiaforrások szerepe és jelentősége a hazai turisztikai szektorban–az energia, mint „helyi termék”. Turizmus bulletin, 18(1), 37-44.
  40. Nemzeti Energiastratégia 2030. (n.d.). https://2010-2014.kormany.hu/download/4/f8/70000/Nemzeti%20Energiastrat%C3%A9gia%202030%20teljes%20v%C3%A1ltozat.pdf
  41. Olivier, D., & Del Lo, G. (2022). Renewable energy drivers in France: a spatial econometric perspective. Regional Studies, 56(10), 1633-1654.
  42. OMSZ. (2023a). Magyarország hőmérsékleti viszonyai. https://www.met.hu/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/homerseklet/ (letöltve: 2023. 03.16.)
  43. OMSZ. (2023b). Magyarország napsugárzás, napfénytartam és felhőzet viszonyai. https://www.met.hu/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/sugarzas/ (letöltve: 2023. 03.16.)
  44. OMSZ. (2023c). Magyarország szél viszonyai. https://www.met.hu/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/szel/ (letöltve: 2023. 03.16.)
  45. Pálné Schreiner, J. (2012). Utilization of geothermal energy in Hungary with Bóly in the focus. Pollack Periodica, 7(1), 107-112.
  46. Park, E., & Ohm, J. Y. (2014). Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident. Energy Policy, 65, 198-211. DOI: 10.1016/j.enpol.2013.10.037
  47. Perrin, J. A., & Bouisset, C. (2022). Emerging local public action in renewable energy production. Discussion of the territorial dimension of the energy transition based on the cases of four intermunicipal cooperation entities in France. Energy Policy, 168, 113143.
  48. Qiu, L., He, L., Lu, H., & Liang, D. (2022). Systematic potential analysis on renewable energy centralized co-development at high altitude: A case study in Qinghai-Tibet plateau. Energy Conversion and Management, 267, 115879.
  49. Radics, Z., Kulcsár, B., & Kozma, G. (2011). Communication between Settlements in the Center Part of Hungarian-Romanian Border-Tourism and Renewable Energy. Eurolimes, 12, 121-129.
  50. Rohács, J., & Simon, I. (1989). Repülőgépek és helikopterek üzemeltetési zsebkönyve. [Airplane and helicopter operation pocketbook]. Műszaki Könyvkiadó, Budapest.
  51. Shrimali, G., Trivedi, S., Srinivasan, S., Goel, S., & Nelson, D. (2016). Cost-effective policies for reaching India's 2022 renewable targets. Renewable Energy, 93, 255-268.
  52. Širá, E., Kotulič, R., Kravčáková Vozárová, I., & Daňová, M. (2021). Sustainable Development in EU Countries in the Framework of the Europe 2020 Strategy. Processes, 9(3), 443.
  53. Szakály, Z., Balogh, P., Kontor, E., Gabnai, Z., & Bai, A. (2020). Attitude toward and Awareness of Renewable Energy Sources: Hungarian Experience and Special Features. Energies, 14(1), 22.
  54. Szép, T. S. (2017). The effects of utility cost reduction on residential energy consumption in Hungary – a decomposition analysis. International Journal of Sustainable Energy Planning and Management, 13, 61-78.
  55. SZVMSZK (2023): Magyarország régiói. https://szakmaikamara.hu/magyarorszag-regioi/ (letöltve: 2023. 03.16.)
  56. Talamon, A., Papp, R. V., Vokony, I., & Hartmann, B. (2019). Global solar energy trends and potential of building sector in Hungary. Interdisciplinary Description of Complex Systems: INDECS, 17(1-A), 51-57.
  57. Tiotiu, A. I., Novakova, P., Nedeva, D., Chong-Neto, H. J., Novakova, S., Steiropoulos, P., & Kowal, K. (2020). Impact of air pollution on asthma outcomes. International Journal of Environmental Research and Public Health, 17(17), 6212. https://doi.org/10.3390/ijerph17176212
  58. Törőcsik, V., & Egri, Z. (2012). The Role of Green Economics in Sustainability. International Journal of Sustainable Economies Management (IJSEM), 1(2), 43-50.
  59. Tutak, M., & Brodny, J. (2022). Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. Journal of Cleaner Production, 345, 131076. https://doi.org/10.1016/j.jclepro.2020.131076
  60. UN. (2015). Paris Agreements, p. 27.,
  61. https://unfccc.int/sites/default/files/english_paris_agreement.pdf
  62. Wendisch, M., Pilewskie, P., Jäkel, E., Schmidt, S., Pommier, J., Howard, S., ... & Mayer, B. (2004). Airborne measurements of areal spectral surface albedo over different sea and land surfaces. Journal of Geophysical Research: Atmospheres, 109(D8). https://doi.org/10.1029/2003JD004392
  63. Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35(5), 2683-2691. https://doi.org/10.1016/j.enpol.2006.12.001
  64. Zhang, W., Maleki, A., & Nazari, M. A. (2022). Optimal operation of a hydrogen station using multisource renewable energy (solar/wind) by a new approach. Journal of Energy Storage, 53, 104983. https://doi.org/10.1016/j.est.2021.101083
  65. Zhao, J., Patwary, A. K., Qayyum, A., Alharthi, M., Bashir, F., Mohsin, M., ... & Abbas, Q. (2022). The determinants of renewable energy sources for the fueling of green and sustainable economy. Energy, 238, 122029.
  66. Zoellner, J., Schweizer-Ries, P., & Wemheuer, C. (2008). Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy, 36, 4136-4141.