Papers

Equilibrium analysis of a semi-mixed duopoly – the production-in-advance case: Játékelméleti modell – a készletre történő termelés esete

Published:
2014-06-16
Author
View
Keywords
How To Cite
Selected Style: APA
Balogh, T. L. (2014). Equilibrium analysis of a semi-mixed duopoly – the production-in-advance case: Játékelméleti modell – a készletre történő termelés esete. Competitio, 13(1), 63-74. https://doi.org/10.21845/comp/2014/1/4
Abstract

We investigate a mixed duopoly where, according to the ownership structure, a private firm and a partially public firm are present on the market of a homogeneous good. The private firm is assumed to be a pure profit maximizer, while the other firm maximizes social welfare in proportion to its state-owned shares. We assume that production takes place before sales are realized. After an introduction to some important results in the field of mixed duopolies, we determine the Nash equilibrium prices and quantities for all possible orderings of moves in the framework discussed. We show that a pure Nash equilibrium exists only if certain conditions are satisfied, and illustrate our findings through a numerical example. Furthermore, we determine the equilibrium of the timing game, i.e. we investigate whether a simultaneous or a sequential ordering of decisions would arise on the market, if the ordering of moves was an endogenous variable.

Journal of Economic Literature (JEL) Classifications: D43, L13

References
  1. Balogh Tamás László – Tasnádi Attila (2012): Does timing of decisions in a mixed duopoly matter? Journal of Economics (Zeitschrift für Nationalökonomie), Vol. 106, No. 3:233–249.
  2. Balogh Tamás László – Tasnádi Attila (2014): Mixed duopolies with advance production. Munkatanulmány.
  3. Barcena-Ruiz, J. C. (2007): Endogenous timing in a mixed duopoly: Price competition. Journal of Economics (Zeitschrift für Nationalökonomie), Vol. 91, No. 3:263–272.
  4. Cremer, H. – Marchand, M. – Thisse, J. (1989): The public firm as an instrument for regulating an oligopolistic market. Oxford Economic Papers, Vol. 41, No. 2:283–301.
  5. Dastidar, K. G. (1995): On the existence of pure strategy bertrand equilibrium. Economic Theory, Vol. 5, No. 1:19–32.
  6. Dastidar, K. G. – Sinha, U. (2011): Price competition in a mixed duopoly. In: Dastidar, K. G. – Mukhopadhyay, H. – Sinha, U. (eds.): Dimensions of Economic Theory and Policy: Essays for Anjan Mukherji. Oxford
  7. University Press, New Delhi.
  8. DeFraja, G. – Delbono, F. (1989): Alternative strategies of a public enterprise in oligopoly. Oxford Economic Papers, Vol. 41, No. 2:302–311.
  9. Deneckere, R. – Kovenock, D. (1992): Price leadership. Review of Economic Studies, Vol. 59, No. 1:143–162.
  10. Jacques, A. (2004): Endogenous timing in a mixed oligopoly: a forgotten equilibrium. Economics Letters, Vol. 83, No. 2:147–148.
  11. Lu ,Y. (2007): Endogenous timing in a mixed oligopoly: Another forgotten equilibrium. Economics Letters, Vol. 94, No. 2:226–227.
  12. Matsumura, T. (1998): Partial privatization in mixed duopoly. Journal of Public Economics, Vol. 70, No. 3:473–483.
  13. Matsumura, T. (2003): Endogenous role in mixed markets: a two production period model. Southern Economic Journal, Vol. 70, No. 2:403–413.
  14. Ogawa, A. – Kato, K. (2006): Price competition in a mixed duopoly. Economics Bulletin, Vol. 12, No. 4:1–5.
  15. Pal, D. (1998): Endogenous timing in a mixed oligopoly. Economics Letters, Vol. 61, No. 2:181–185.
  16. Roy Chowdhury, P. (2009): Mixed duopoly with price competition. Munich Personal RePEc Archive, MPRA Paper No 9220.
  17. Tasnádi Attila (2001): A Bertrand–Edgeworth-oligopóliumok. Közgazdasági Szemle, Vol. 48, No. 12:1081–1092.
  18. Tasnádi Attila (2013): Duopólium részben állami tulajdonú vállalattal. In: Matematikai közgazdaságtan: elmélet, modellezés, oktatás – Tanulmányok Zalai Ernőnek. Műszaki Könyvkiadó, Budapest:177–186.
  19. Tomaru ,Y. – Kiyono, K. (2010): Endogenous timing in mixed duopoly with increasing marginal costs. Journal of Institutional and Theoretical Economics, Vol. 166, No. 4:591–613.