Évf. 7 szám 2 (2008)
Kutatás közben

Implementing Risk Adjusted Capitation Payments with Health Care Reforms in Hung

Megjelent december 15, 2008
Balázs Nagy
Budapesti Corvinus Egyetemen
Ágnes Brandtmüller
Budapesti Corvinus Egyetemen
PDF (English)

APA

Nagy, B., & Brandtmüller, A. (2008). Implementing Risk Adjusted Capitation Payments with Health Care Reforms in Hung. Competitio, 7(2), 147–160. https://doi.org/10.21845/comp/2008/2/8

Since the late nineties Hungarian governments have been considering the introduction of new health care arrangements by establishing organizations with devolved responsibilities for the management of health care. These organizations are typically financed through a weighted (risk adjusted) capitation system which is regarded as an adequate and optimal tool for resource allocation purposes. Through capitation one needs to handle large inequities in the Hungarian health care system and keep an eye on the incentives for efficiency. For the capitation formula a relatively broad choice of risk adjusters are available in the form of pharmacy- and diagnosis-based patient level utilization data (health-based adjusters) and area level socio-economic data (non health-based adjusters). The instant application of health-based adjusters has limitations because they reflect a distorted provider structure and offer perverse incentives; therefore a gradual shift from using non health-based adjusters to health-based adjusters is preferred. The early phase of the capitation system also implies a strong presence of risk sharing arrangements and other complementary policies. Given that promoting efficiency and equity are to be pursued, the capitation approach outlined in this paper should serve as a guide to future Hungarian health care system reforms.

Journal of Economic Literature (JEL) code: I28, G28, G32, H51

  1. Antioch, K. M. and Walsh, M. K. (2002): Risk-adjusted capitation funding models for chronic disease in Australia: alternatives to casemix funding. European Journal of Health Economics, 3, 83–93.
  2. Ash, A. S., Ellis, R., Pope, G. C., Ayanian, J. Z., Bates, D. W., Burstin, H., Iezzoni, L. I., MacKay, E., and Yu, W. (2000): Using diagnoses to describe populations and predict costs. Health Care Financing Review, 21, 7–28.
  3. Boncz, I., Takács, E., Szaszkó, D., and Belicza, É. (2006): Az OEP krónikus fekvőbeteg-szakellátási kassza igénybevétele. Területi egyenlőtlenségek I. Kórház, 12, 37–43.
  4. Ellis, R (2002): Using Fuzzy Diagnoses for Risk Adjustment. Unpublished Manuscript. http://www.bu.edu/econ/workingpapers/papers/Randall%20P.%20Ellis/EllisFuzzyDiag5.pdf
  5. Ellis, R., Pope, G. C., Iezzoni, L. I., Ayanian, J. Z., Bates, D. W., Burstin, H., and Ash, A. S. (1996): Diagnosis-based risk adjustment for Medicare capitation payments. Health Care Financing Review, 17, 101–128.
  6. EÜM (2004): Az egészségügyi ellátásszervezésről szóló 2004. évi törvényjavaslat – Tervezet. http://eum.aitia.hu/torvenytervezet
  7. EÜM (2007): The 2007-2009 Reform of the Hungarian Health Insurance System. Egészségügyi Minisztérium honlapja . http://www.eum.hu/download.php?docID=1318
  8. Fishman, P. A., Goodman, M. J., Hornbrook, M. C., Meenan, R. T., Bachman, D. J., and O’Keeffe Rosetti, M. C. (2003): Risk adjustment using automated ambulatory pharmacy data: the RxRisk model. Medical Care, 41, 84–99.
  9. Gilmer, T., Kronick, R., Fishman, P., and Ganiats, T. G. (2001): The Medicaid Rx model: pharmacy-based risk adjustment for public programs. Medical Care, 39, 1188–1202.
  10. Goglio, A (2005): In search of efficiency: improving health care in Hungary. No. 446 ECO/WKP(2005)33. Organisation for Economic Co-operation and Development, Economics Department. Working papers.
  11. Kronick, R., Dreyfus, T., Lee, L., and Zhou, Z. (1996): Diagnostic risk adjustment for Medicaid: the disability payment system. Health Care Financing Review, 17, 7–33.
  12. Lamers, L. and van Vliet, R. (2004): The Pharmacy-based Cost Group model: validating and adjusting the classification of medications for chronic conditions to the Dutch situation. Health Policy, 68, 113–121.
  13. Lamers, L., van Vliet, R., and Van de Ven, W. (2003): Risk adjusted premium subsidies and risk sharing: key elements of the competitive sickness fund market in the Netherlands. Health Policy, 65, 49–62.
  14. Lamers, L. M. and Vliet, R. C. (2003): Health-based risk adjustment Improving the pharmacy-based cost group model to reduce gaming possibilities. European Journal of Health Economics, 4, 107–114.
  15. Magyar Közlöny (2008): 2008. évi I. törvény az egészségbiztosítási pénztárakról.
  16. Mihályi, P. (2003b): HMO experiment in Hungary – a unique road to health care reform. 9/2003. Central European University Economics Working Paper.
  17. Mihályi, P. (2003a): Bevezetés az egészségügy közgazdaságtanába. Veszprém: Veszprémi Egyetemi Kiadó.
  18. Milgrom, P. and Roberts, J. (1990): The Efficiency of Equity in Organizational Decision Processes. American Economic Review, 80, 154–159.
  19. Nagy, B. and Dózsa, C. (2002): Az irányított betegellátási program tapasztalatai és a továbbfejlesztés lehetőségei. Egészségügyi Gazdasági Szemle, 40, 480–500.
  20. Nagy, B., Dózsa, C., Gilicze, L., Gulácsi, L., Whiteld, M., Boncz, I., Falusi, Z., and Reszegi, C. (2005a). Development of risk adjusted capitation payment system for Hungarian Managed Care Organizations. 5th World Congress of the International Health Economics Association, Barcelona: poster presentation.
  21. Nagy, B., Falusi, Z., Boncz, I., Dózsa, C., and Gerendy, P. (2005b): A művesekezeltek ellátása Magyarországon 2000–2003. Egészségügyi Gazdasági Szemle, 43, 32–37.
  22. Nagy, B., Lepp-Gazdag, A., Dózsa, C., Boncz, I., and Gilicze, L. (2003). Development of risk adjusted capitation payment system for Hungarian Managed Care Organizations. International Health
  23. Economics Association 4th World Congress, San Francisco: poster presentation.
  24. Nagy, B., Sipos, J., Dózsa, C., and Borcsek, B. (2008): Implementing risk adjusted capitation payments with health care reforms: the case of Hungary.7th European Conference on Health Economics, Rome:
  25. poster presentation.
  26. Nagy, B., Sipos, J., and Nagy, J. (2007): Illusztrációk a fejkvótás forrásallokáció számításához Magyarországon – még csak a logikát ismerjük... Informatika és Menedzsment az Egészségügyben, 6, 6–13.
  27. Newhouse, J. P. (1998): Risk adjustment: where are we now? Inquiry, 35, 122–131.
  28. OECD (2008): OECD Health Data 2008 Version.
  29. Orosz, É. (2001): Félúton vagy tévúton? Egészségügyünk félmúltja és az egészségpolitika alternatívái. Egészséges Magyarországért Egyesület.
  30. Peacock, S. and Segal, L. (2000): Capitation funding in Australia: Imperative and impediments. Health Care Management Science, 3, 77–88.
  31. Rice, N. and Smith, P. (2001): Capitation and risk adjustment in health care nancing: an international progress report. e Milbank Quarterly, 79, 81–113.
  32. Rice, N. and Smith, P. (2002): Strategic resource allocation and funding decisions. In: E. Mossialos, A. Dixon, J. Figueras, and Kutzin J (Eds.): Options for Europe (pp. 250–271). Buckingham: Open University Press.
  33. Sales, A. E., Liu, C. F., Sloan, K. L., Malkin, J., Fishman, P. A., Rosen, A. K., Loveland, S., Paul Nichol, W., Suzuki, N. T., Perrin, E., Sharp, N. D., and Todd-Stenberg, J. (2003): Predicting costs of care using a pharmacy-based measure risk adjustment in a veteran population. Medical Care, 41, 753–760.
  34. Schokkaert, E. and Van de Voorde, C. (2003): Belgium: risk adjustment and nancial responsibility in a centralised system. Health Policy, 65, 5–19.
  35. Segal, L., Donato, R., Richardson, J., and Peacock, S. (2002): Strength and limitations of competitive versus non competitive models of integrated capitated fundholding. Journal of Health Services Research and
  36. Policy, 7, 56–64.
  37. Selvin, H. C. (1958): Durkheim’s Suicide and problems of empirical resaerch. American Journal of Sociology, 63, 607–619.
  38. Sheldon, T. (1997): Formula fever: allocating resources in the NHS. British Medical Journal, 315, 964.
  39. Sinkó, E. (2008): Az egészségbiztosítási rendszer átalakításának legújabb kori története, 2006–2008. II. rész.Informatika és Menedzsment az Egészségügyben, 7, 5–14.
  40. Smith, P. (1999): Capitated nance and health care needs. Possibilites and limitations. In: Cassanovas LG and Puente CJ (Eds.), Necesidad sanitaria, demanda y utilización. XIX Jornadas de Economía de la Salud. Huesca: Asociación de Economía de la Salud. (pp. 15–28).
  41. Smith, P., Rice, N., and Carr-Hill, R. (2001): Capitation funding in the public sector. Journal of the Royal Statistical Society, 164, 217–257.
  42. Szaszkó, D., Boncz, I., Belicza, É., and Takács, E. (2006): Az OEP krónikus fekvőbeteg-szakellátási kassza igénybevételének területi egyenlőtlenségei. Magyar Epidemiológia, 3, 223–233.
  43. Takács, E., Belicza, É., Szaszkó, D., and Boncz, I. (2006): Az OEP járóbeteg-szakellátási kassza igénybevételének területi egyenlőtlenségei. Informatika és Menedzsment az Egészségügyben, 5, 15–22.
  44. van Barnevald, E. M., Lamers, L., van Vliet, R., and van den Ven, W. (2001): Risk sharing as a supplement to imperfect capitation: tradeoff between selection and efficiency. Journal of Health Economics, 20, 147–168.
  45. Van de Ven W, Beck, K., Wasem, J., and Zmora, I. (2007): Risk adjustment and risk selection in Europe: 6 years later. Health Policy, 83, 162–179.
  46. van den Ven, W. and Ellis, R. (2000): Risk adjustment in Competitive Health Plan Markets. In Newhouse J P and Culyer A J (Eds.), Handbook of Health Economics (pp. 757–845). Elsevier Science.
  47. Weiner, J. P., Dobson, A., Maxwell, S. L., Coleman, K., Stareld, B., and Anderson, G. F. (1996): Risk-adjusted Medicare capitation rates using ambulatory and inpatient diagnoses. Health Care Financing
  48. Review, 17, 77–99.
  49. Welch, W. P. (2002): Outpatient encounter data for risk adjustment: strategic issues for Medicare and Medicaid. Journal of Ambulatory Care Management, 25, 1–15.
  50. Zhao, Y., Ash, A. S., Ellis, R., Ayanian, J. Z., Pope, G. C., Bowen, B., and Weyuker, L. (2005): Predicting pharmacy costs and other medical costs using diagnoses and drug claims. Medical Care, 43, 34–43.