No. 38 (2010)
##issue.tableOfContents##
Articles
-
Preface
5Views:40In the frame of a common “Hungarian-Ukrainian Intergovernmental S&T Cooperation Programme” which title is “Change of soils ecological characteristics of Ukraine and Hungary in the conditions of anthropogenic transformed ecosystems and optimization of biological processes of plants primary feeds elements mobilization” a Workshop was held in Debrecen. The member institutes of project participated with different presentation in this program.
The title of Workshop was: “Anthropogenic effect on the properties of Middle and Eastern European chernozem soils and on the sustainable agricultural production”.
The aim of the Workshop was to give relevant information about the present situation of the Middle and Eastern European Chernozem soils, especially emphasize the effect of different loading on the quality (properties) of chernozem soils. With the Workshop we would like to create a tradition for discussion about the anthropogenic effect on the soil properties and through it on the productivity of different soils. It was a forum for discussion of research results related to problems and possibilities for prevention of soil quality. With this possibility we would like to contribute to the sustainable agricultural production.
The papers were read for the publisher and we would like to show them in a separate supplement of Journal of Agricultural Sciences, Acta Agraria Debreceniensis as one of the results of the project.
The papers comply with the requirements of the scientific issue except those two which show the university and the department of the Ukrainian partner taking part in this project.
The participant Institutes of the project:
- Dnepropetrovsk National University, Faculty of Biology and Ecology;
- Kryvyi Rig Botanical Garden NAS of Ukraine, Plant Physiology & Soil Biology Department;
- Department of Agrochemistry and Soil Sciences of Centre for Agricultural and Applied Economics;
- Research Institute of Karcag, Centre for Agricultural and Applied Economics. The collaboration with Ukrainian partners was successful and we have confidence in the further cooperation in scientific research.pdf16 -
Dnipropetrovsk National University named after Oles’ Gonchar
9-13Views:94The Dnipropetrovsk National University is a multi-profile educational and scientific complex, where 16 faculties, the faculty of continuing education, the faculty of correspondence and distance education, post-graduate courses, doctorate, three scientific research institutes, 107 sub-faculties (departments) function, where about 1300 teachers including 150 Doctors of Science, professors and about 700 Candidates of Science, associate professors. In Dnipropetrovsk National University 15,000 students study majoring in 64 fields of knowledge and also foreign students and post-graduate students from more than 20 countries of the world study there. The educational and scientific process at the university correspond to the highest levels of the home and world standards.
pdf126 -
The Biology, Ecology and Medicine Faculty of Dnipropetrovsk National University after Oles’ Gonchar
15-17Views:82The historical rewiev of Biology, Ecology and Medicine Faculty is presented. The Faculty of Biology, Ecology and Medicine has 7 Departments, Aquarium complex, Zoological Museum, Vivarium and Herbarium. It works in cooperation with the Research Institute of Biology, Botanical Garden, O. L. Bel’gard International Biosphere Station, and Biological Station of DNU and forms the regional Centre of Science, Education and Culture in the field of Biology, Ecology and Nature Conservation in Central Ukraine. The Faculty proposes courses in the following specialities: Biology, Zoology, Botany, Microbiology and Virology, Biochemistry, Physiology, Ecology, Environmental Protection and Balanced Nature Management. All of them have the highest IV level of accreditation. Students get a pedagogical education.
pdf124 -
Effects of different groundcover matters on nutrient availability in an integrated apple orchard in Eastern-Hungary
21-25Views:115The aim of our study is to examine the effects of different groundcover methods on nutrient availability and uptake of apple orchard. The
experiment was carried out at the orchard of TEDEJ Rt. at Hajdúnánás-Tedej, in Eastern Hungary. The orchard was set up on lowland chernozem soil in the Nyírség region. It was established in the autumn of 1999, using Idared cultivar grafted on MM106 rootstocks at a spacing of 3.8 x 1.1 m.
The applied treatments were divided into two groups according to origins and effects. On the one hand, different livestock manures (cow,
horse and pig), on the other hand different mulch-matters (straw, pine bark mulch, black foil) were used. The different manures and mulches
were applied on the surface to test the effectiveness of these materials.
The effectiveness of manure treatments was higher than the other treatments on AL soluble P content of soil. Mostly the manure treatments
increased the AL soluble K of soil. Our all treatments increased 0.01 M CaCl2 soluble NO3 - -N content of the examined soil layers. The effect
of manure treatments was the highest. From the results it was evident that the amount of easily soluble organic nitrogen fraction distributed
more homogeneously than the other mineral N fractions examined.
Our results can be summarized as follows:
1. Our results pointed out that the used ground covering matters divided into several categories regarding its effect.
2. The available N, P and K contents of soil were mostly increased by applying manures.
3. The effectiveness of straw, mulch and mostly black foil was lower.
4. Differences were found between nutrient supplying treatments and the treatments which did not supply nutrients.pdf135 -
The effect of zinc fertilization on the yield and element content of ryegrass
27-31Views:126The effect of Zn fertilization on the yield and Zn, N, P, K, Mg and Mn content of ryegrass was studied in a greenhouse experiment for 8 chernozem soils with three replicates under uniform NPK supply and irrigation. The applied Zn rates were 0, 2.5 and 5 mg/kg Zn. Due to Zn doses the yield incrased significantly. Zn fertilization increased the plant Zn content and decreased the plant P and Mn content significantly. For N, K and Mg there was no significant effect.
pdf164 -
Impact of ammonium nitrate and Microbion UNC bacterial fertilizer on dry matter accumulation of ryegrass (Lolium perenne L.)
35-39Views:101Pot experiment was performed to investigate the effects of increasing NH4NO3 doses with or without Microbion UNC bacterial fertilizer
application on dry matter production of ryegrass (Lolium perenne L.). Experiment was set up on calcareous chernozem soil of Debrecen-Látókép and on humus sandy soil of Őrbottyán. The bi-factorial trials were arranged in a randomized complete block design with four replications. Grass was cut three times. Dry matter production was determined and the sum of biomass of cuts was calculated as cumulated dry weights. Analysis of variance was carried out on the data in order to provide a statistical comparison between the treatment means. The least significant difference (LSD5%) test was used to detect differences between means. On the basis of our results it can be concluded, that the dry weights of ryegrass cultivated on chernozem soil were higher than on sandy soil. With increasing nitrogen supply the dry matter production of grass significantly increased in both types of soils. In case of sandy soil the increasing effect was more expressed, but dry weights of this soil never reached the appropriate values of chernozem soil. Application of Microbion UNC had positive effect on dry matter production of ryegrass grown on both two types of soils but the effect was more expressed on chernozem soil. Finally it can be concluded that the increasing effect of NH4NO3 on biomass weights was more expressed in both types of soils, the biofertilizer application also increased the dry weights of plant in a small degree.pdf151 -
Studies of the effects of N fertilizers and Microbion UNC biofertilizer on microelement content of horseradish (Armoracia macrocarpa)
41-45Views:131A field experiment on calcareous chernozem soil was performed to study the effects of different N and bacterial fertilizers on the nutrient content of horseradish (Armoracia macrocarpa). In the experiment the trials were arranged in a randomized block design with three replications, applying three levels of NH4NO3 and different N fertilizers, namely ammonium-nitrate, urea and calcium-nitrate, with or without application of Microbion UNC biofertilizer.
In the present paper the changes and distribution of manganese, zinc and copper contents of the horseradish plant are summarized by the
effect of different treatments.
The Mn content of leaves were higher in all cases than those of roots, but Zn mainly accumulated in the roots. The distribution of copper within the horseradish plant was more equalized than that of Zn and Mn. Different N fertilizers and increasing doses of ammonium-nitrate had effects mainly on the microelement contents of leaves. The highest Mn contents of plant were measured in treatments of Ca(NO3)2 and Ca(NO3)2+Microbion. The lowest ammonium nitrate dose (N1) decreased the Mn content of leaves compared to control, but further doses
(N2, N3) did not alter these values any longer. Microbion UNC biofertilizer did not have any effect on the Mn content of roots, but we measured higher Mn in leaves in some combined treatments. Ca(NO3)2 increased the zinc content in leaves and roots in a noticable manner. With the increasing of NH4NO3 doses, the Zn content of leaves and roots augmented significantly. Neither N fertilizers (or the increasing doses of NH4NO3) nor the biofertilizer application influenced the Cu content of horseradish plant.
N fertilizers had higher effects on the microelement content of horseradish, the biofertilizer’s effect was smaller and was not the same in every treatment.pdf171 -
The influence of fertilization on the soil characteristics of a calcareous chernozem in a long term experiment
47-52Views:95In the long term fertilization experiment of the University of Debrecen, Centre for Agricultural and Applied Economic Science(CAAEC) (Debrecen Látókép), the effects of a 25-year-long fertilization were examined in terms of some chemical and microbiological properties of soil. With the growing doses of fertilizers, the available nutrient content of soil increased. At the same time the pH significantly decreased, while the hidden acidity increased. Moreover, the ratio between the soil bacteria and microscopic fungi, and the occurrence of microbes also changed. The number of sensitive physiological bacteria groups decreased dramatically. These changes indicate the reactions of living organisms; they correspond to the „resistance stage” of stress effects, but in the case of nitrifying bacteria, they reach the „exhaustion stage”.
pdf128 -
Examination of CO2 emission of different stubbles on a chernozem soil
53-59Views:95Applying alternative soil cultivation methods based on reduced disturbance of the soil more favourable conditions can be created in order to increase the organic matter content of the soil and the availability of the nutrients for the crops. In complex soil tillage experiment – in 1997 was set on – at Karcag, as the element of the investigation of soil reduced and conventional tillage systems. There is close correlation between the degree and intensity of CO2-emission from the soil and the structural state and organic matter content of the soil. In order to quantify the increased CO2-emission from soil due to soil preserving cultivation systems, in situ CO2-emission of soil was measured by means of an ANAGAS 98 infrared gas analyser. The soil type of the investigated plot is meadow chernozem solonetz in the deeper layers, a soil type that is characteristic
for the Trans-Tisza Region of Hungary. In this paper the results gained from the measurement on different stubbles are published, as we consider stubbles the most suitable state when the effects of different soil cultivation systems on the microbiological activity of the soil can be compared. Experimental data provided information about the length of the time period when CO2 emission increasing effects of soil cultivation are observable. Studying the effect of different soil cultivation methods on the CO2 emission from chernozem soil is indisputably actual and needs more efforts as it can contribute to develop a more environmental friendly agricultural production. The main goal of these measurements was to determine the effect of soil cultivation technologies and certain agrotechnical elements on the factors of the soil carbon cycle.pdf134 -
Effects of cultivation methods on some soil biological parameters of a meadow chernozem soil (Vertisols)
61-66Views:85The effect of extended drought conditions on soil, the unfavourable cultivation technologies and the application of chemicals have been enhancing the processes of physical and biological soil degradation, so the fertility of soil is gradually declining.
The effects of two cultivation methods – traditional ploughing (TP) and conservation tillage (CT) – on the biological activity of a meadow
chernozem soil were examined in a long term experiment. Different parameters of the biological activity of soil were determined. These are
the numbers of total bacteria, microscopic fungi, aerobic cellulose decomposing bacteria, as well as the activities of some important soil
enzymes and CO2 production.
Conservation tillage seemed to be a more favourable cultivation method for the majority of microorganisms, the activities of urease and
dehydrogenase enzymes and CO2 production, compared to the traditional ploughing system. These parameters increased significantly,
especially in the upper layer of conservation tillage plots. Concerning the plant cultures, the majority of microbiological parameters were
higher in the soil of vetch (Vicia sativa L.) depending on the cultivation methods, so involving the pulses to the crop-rotation seems to be
very important in this soil type.
According to the ninth year’s results, the importance of conservation tillage as a means of protecting the soil biological activity in meadow
chernozem (Vertisols) can be established; it was proven by microbiological investigations.pdf134 -
Identification and specific variety of actinomyces of streptomycetes genus in some chernozems of Ukraine
67-74Views:75Is definite the quantitative and quality composition of chernozem usual and southern streptomycetes cenosis. It is rotined that humus horizons of chernozem usual more biogenic, than chernozem southern. Analysis of specific structure of streptomycetes association and calculation of some biodiversity indexes by Margalef, Berger-Parker and Serensen it was allowed to set the specific features of forming of these microorganisms cenosis in investigated soils.
pdf133 -
Comparative examination of a bacterium preparation (BACTOFIL® A10) and an artificial fertilizer [CA(NO3)2] on calcareous chernozem soil
75-80Views:134In a small-pot experiment a bacterium preparation, Bactofil® A10 and an artificial fertilizer containing Ca(NO3)2 in different dosages were studied on calcareous chernozem soil, concerning the readily available nutrient content of soil (nitrate-nitrogen, AL-phosphorus, ALpotassium content of soil, some soil microbial characteristics (total number of bacteria and fungi, cellulose-decomposing and nitrifying bacteria, CO2-production of soil), and the amount of the plant biomass.
The readily available nutrient content of the calcareous chernozem soil increased due to the treatments, except for the change in the soil nitrate-nitrogen content, which did not measure up to the control due to the effect of high-dosage Bactofil.
The treatments also influenced the examined microbial characteristics of the soil positively. The artificial treatments significantly increased the total number of bacteria and the number of cellulose-decomposing and nitrifying bacteria. The low-dosage Bactofil significantly increased the number of cellulose-decomposing bacteria and both Bactofil dosage significantly increased the number of nitrifying bacteria. The measure of the soil respiration grew in all treatments, but significantly only in Ca(NO3)2 fertiliser treatments.
The quantity of the plant biomass was grew in a low-dosage Bactofil and significantly in the artificial fertiliser treatments. The highest plant biomass quantity was measured in the high-dosage artificial fertiliser treatment.
In the correlation analyses we found some medium positive correlation between the soil chemical, microbiological parameters examined, and the plant biomass in the case of both treatment-forms.
Based on our results Ca(NO3)2 artificial fertiliser treatments on calcareous chernozem soil proved to be more stimulating regarding the
examined soil characteristics and the amount of the plant biomass, but the low-dosage Bactofil also positively influenced the majority of the
soil characteristics examined in terms of nutrient supply.pdf154 -
Intensity of free radical processes in the leaves of arboreal plants under act of industrial dust borne extracts
83-87Views:77The influence of industrial pollutants on the intensity of lipid peroxidation in the assimilatory organs of arboreal plant was investigated. The differential changes of the probed indexes are set depending on the species. Information is got can testify to participation of lipid peroxidation products in forming of reactions-answers of arboreal plants on influence of industrial dust borne extract with content of heavy metals. Determination of level and rates of accumulation of Zn, Ni, Pb and Cd, in the leaves of arboreal plants in the conditions of different
contamination level allowed to take species to two groups. To the first (phytoextraction potential exceeds a base-line level in 10 times) belong Populus bolleana Lauche, P. italica (Du Roi) Moench, Picea pungens Engelm and Sorbus aucuparia L. To the second (exceeds a base-line level from 5 to 10 times) belong Acer negundo L., Aesculus hippocastanum L., Betula pendula Roth and Tilia cordata Mill. The most substantial increase of peroxidation secondary product content (more than in 2.5 times) is peculiar for B. pendula, A. hippocastanum and P. pungens Engelm., that well conforms to the rates of heavy metals translocation, it has however species-specific character.pdf141 -
Violation prooxidative-antioxidant stability at maize shoots at different level of accumulation of cadmium and nickel
89-94Views:75Joint influence of cadmium and nickel was investigated on the feature of their accumulation by the vegetative organs of 10-days' old maize shoots. It was established that most intensively noted metals are taken in by the roots of shoots in the first 7 hours stressing influencing, while in leaves they appear only after a 7-hour long exposition. It was stated that the absorption process of the noted metals by a root system is carried by two-phase character. The indexes of inner-tissue contamination are calculated. Activating by the cadmium and nickel ions of lipid peroxidation as marker of the stressing influencing, and also was shown the proper increase of intensity of functioning of ascorbate peroxidase as the antioxidant enzyme protection of cell.
pdf144 -
The phosphate state and biochemical mobilization of phosphorus compounds in arboreal plants’ soils
95-98Views:91Some indices of the phosphoric fractions of primery degraded soils, which are formed separate areas of technogenic landscapes, on a spoil-bank of iron-ore mine in the near of Kryvyi Rig, under act of lignosa, which are used for biological recultivation of degraded soils are investigated. Maintenance of mineral phosphates and features of organic phosphorus accumulation are set in soil under arboreal planting. Nutrient supply of plants is enhanced by mobile phosphates and their dynamics during vegetation period. Activity of alkaline and acid phosphatase enzymes are concerned also. On the basis of the soil enzymes activity information it is stated, that under the 35-years-old plantage of Robinia pseudoacacia L. the biochemical mineralization of organic phosphorus compounds passes considerably more actively than under Pinus pallasiana D.Don.
pdf137 -
Activity of some enzymes, participating in nitrogen compounds transformation in chernozem, polluted by fluorine compounds
99-104Views:117Contamination of chernozem by fluorine compounds variously affects those enzymes (urease, asparaginase, glutaminase, arginase, amidase), which takes part in the metabolism of nitrogen-bearing organic compounds. In broken soils the inhibited desaminisations is stronger, than enzymatic hydrolysis of asparagine and arginine. The features of seasonal dynamics of change activity of urease and correlation dependence of its activity from some physical and chemical soils properties are described. These tendencies well comport with the results of model experiments. At minimum HF influence there is inhibition of processes of monohydrocarboxylic acids desaminisation, hydrolytic breaking up of arginine and glutamine. By a side with this there is activating of urea and asparagine breaking up processes on the initial stages of toxicant influence. The study of kinetics of process of urea enzymatic hydrolysis in chernozem at the different level of HF influence showed changes of initial and maximal velocity of enzymatic reaction, and also Michaelis-Menten constant.
pdf126 -
Species-specificity of the glutathione reduced form accumulation in the arboreal plants, testing influence of industrial emissions
105-110Views:86Conducted are researches of dynamics of glutathione reduced form maintenance in the leaves of arboreal plants which grow in the zones of different level of contamination by industrial emissions of“Red Lead Factory” LTD and ArselorMittal Kryvyi Rig. For comparison, similar investigations were conducted in the intact Botanic Garden in s.c.t. Sofievka. Findings testify to absence of negative influence of industrial emissions and, thus, the arboretum of botanical garden also can be examined as conditional control. It was stated that it is set a few strategies of active oxygen forms and their metabolites deactivation, appearing in cells under action of environment negative factors. To our opinion, fluctuation of glutathione reduced form maintenance can examine as an index of plants stability, on which investigational species can be distributed on steady and moderato steady.
pdf118 -
The zooecological remediation of technogen faulted soil in industrial region of Ukraine steppe zone
111-115Views:87In Ukraine’s Steppe zone the extraction of minerals is important. To eliminate the consequences of coal mining the agricultural recultivation of the disturbed soil is used. Thus toxic compounds for human beings and the majority of plants and soil biota representatives, which can be found mining rock, get into plants and invertebrates by trophy chains. When remediating soil, it is necessary to create tropic conditions in order to provide the life of soil biota. Earthworms (Lumbricidae) are the primary decomposers of the organic material. They are numerous in soil and facilitate the improvement of natural and artificially created soil. This paper studies the possible influence of different variants of substrates, which are used in re-cultivation, the leaf litter from leaves of different wood species, as well as different levels of humidity on the representatives of soil saprophages. Optimal variants of artificial mixed-soil providing the stable existence of animals have been shown, which are recommended for the implementation of rehabilitation measures.
pdf48 -
Influence of mammal fossorial activity on bearing-out some chemical elements on up of soil cover
117-120Views:97Fossorial activity of mammals is conductive to trace of microelements from more deep soil horizons into zone of its active involving to biological cycle. As a result of researches have established the mostly intensive migration of micro- and macroelements that is goes at the expense of mammals fossorial activity it is typical for humid gully lime-and-ash with oak wood. A middle position in speed of entering chemical elements is belonging to artificial oak wood in the watershed and humid lime-and-ash with oak wood in floodplain. Mostly slow migration in speed of entering elements is typical for middle-dry pine wood on sandy terrace.
pdf136 -
Examination the effects of different herbicides on the soil microorganisms of a calcareous chernozem
121-126Views:91Pesticides play a key role in fighting weeds, pests and parasitic fungi. According to surveys, pests reduce the yield of agricultural crops by 35% worldwide. Pests, fungi and weeds account for 14%, 12% and 9% yield loss, respectively (Gáborjányi et al., 1995). Chemicals have contributed to increasing and maintaining the yields of crop production for decades. Today, agricultural production (in spite of many efforts) is unthinkable without the use of pesticides (herbicides, insecticides and fungicides). On the other hand, these chemicals contribute to the pollution of the atmosphere, surface and underground waters, and agricultural soils, especially if they are applied improperly.
The sustainable agricultural production pays attention to environment-friendly cultivation-technologies; but at the same time it makes an effort to produce good quality and economical products. The examination of the herbicides’ secondary effects, fits into this chain of idas namely, how the herbicides affect – stimulating or inhibiting – the soil microbiological processes, prevention of soil fertility.
In the course of the experimental work the effect of herbicides on soil biological properties were examined in different maize (Zea mays) cultures. We wanted wished to know that how the herbicides affect the quantity change of soil microorganisms, the life of different physiological groups of bacteria and the activity of microorganisms. A small pot experiment was set up in 2008 with the application of two herbicides - Acenit A 880 EC and Merlin 480 SC – in the breeding house of the Department. The moisture content and nutrient supply were at optimal level in the experiment.
On the basis of results the following can be stated:
1. It can be stated that the two herbicides and all their doses affected negatively the number of total soil bacteria, the
inhibiting effects were significant. The quantity of microscopical fungi increased by the effect of Merlin 480 SC and decreased in the treatments of Acenit A 880 EC.
2. The Acenit A 880 EC had stimulating effect on the nitrate mobilization. The CO2-production was stimulated by the basic doses of herbicides; the other treatments did not influence the CO2-production significantly.
3. The quantity of microbial biomass-carbon –except for only one treatment- decreased significantly by the effect of herbicides. Besides it, the quantity of microbial biomass-nitrogen increased significantly in the treatments of Acenit A 880 EC.
4. The biomass of test plant decreased in the treatments of herbicides, their quantities were smaller than in the control. In the pots treated by Merlin 480 SC, parallel with the increase of doses decreased the quantity of plant-biomass.pdf136 -
Influence of phytophagous mammals environment-forming activity on the soil invertase fermentative activity in conditions of mining impact region
127-130Views:111Excretorial and fossorial activity of mammals is an important part of environment-forming activity. Mammals have influences on important biogeocenotic processes, especially on the soil processes. Determination the maintenance of soil invertase as one of diagnostic description the ecological state allowed defining limits of oscillation index in dump areas and in clean (control) native areas. The obtained results of the investigation indicate the soil depth, duration of experiment and type of area influence on soil invertase activity with the high statistical level of significance. Positive influence is revealed on invertase activity changing on dump areas, where an active excretorial and fossorial activity of phytophagous mammals was observed.
pdf125 -
Environmental friendly maize (Zea mays L.) production on chernozem soil in Hungary
133-135Views:110We have been studied the effects of crop-rotation, fertilization and irrigation on the yields of maize in different cropyears characterized
by different water supply (2007 year=dry; 2008 year=optimum) on chernozem soil. Our scientific results proved that in water stress
cropyear (2007) the maximum yields of maize were 4316 kg ha-1 (monoculture), 7706 kg ha-1 (biculture), 7998 kg ha-1 (triculture) in non
irrigated circumstances and 8586 kg ha-1, 10 970 kg ha-1, 10 679 kg ha-1 in irrigated treatment, respectively. In dry cropyear (2007) the
yield-surpluses of irrigation were 4270 kg ha-1 (mono), 3264 kg ha-1 (bi), 2681 kg ha-1 (tri), respectively. In optimum water supply cropyear
(2008) the maximum yields of maize were 13 729-13 787 (mono), 14 137-14 152 kg ha-1 (bi), 13 987-14 180 kg ha-1 (tri) so there was no
crop-rotation effect. In water stress cropyear (2007) fertilization caused yield depression in non irrigated treatment (control=2685 kg ha-1;
N240+PK=2487 kg ha-1). Our scientific results proved that the effects of abiotic stress could be strongly reduced by using the optimum crop
models in maize production. We obtained 8,6-11,0 t ha-1 maximum yields of maize in water stress cropyear and 13,7-14,2 t ha-1 in optimum
cropyear on chernozem soil with using appropriate agrotechnical elements.pdf156 -
The main influencing factors effecting the yield of maize
137-141Views:115Maize is one of Hungary’s major cereals. In the 1970s and 1980s, we were in the frontline regarding yields and genetic advancement. However, yield fluctuation in maize has increased to 50-60% from 10-20% since the 1980s, which was partly caused by the increase in weather extremes due to climate change and by agrotechnical shortcomings.
The experiments were carried out on typical meadow soil in four repetitions in the period of 2007-2008. In the sowing time experiment, sowing was performed on 10 April, 25 April, 15 May under a uniform fertilization of N120, P2O580 K2O 110 kg/ha. In the fertilization experiment, the yielding capacity of 10 hybrids with different genetic characteristics was studied in a control (non-fertilized) treatment and basic treatment of N40 P2O5 25, K2O 30 kg ha-1 active ingredient and a treatment with fivefold dosages of the basic treatment. In the plant density experiment, the relationship between plant density and yield was analysed at plant densities of 45, 60 and 75 thousand plants per ha. We found a tight correlation between sowing time and yield and grain moisture content at harvest. We found that grain moisture can be reduced by 5-10% by applying an earlier sowing time.
The agroecological optimum fertilizer dosage was N 40-120, P2O5 25-75, K2O 30-90 kg ha-1 active ingredient at a plant density of 60-90 thousand plants ha-1 depending on the hybrid and the year.pdf154