Articles

Unraveling changes in the duck microbiome and inflammatory processes due to allithiamine-enriched feed

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Szőke, Z., Szilágyi-Tolnai , E., Dávid, P., Fauszt, P., Szilágyi, E., Szilágyi-Rácz, A., Stündl, L., Gál, F., Gálné Remenyik, J., & Paholcsek, M. (2024). Unraveling changes in the duck microbiome and inflammatory processes due to allithiamine-enriched feed. Acta Agraria Debreceniensis, 1, 163-171. https://doi.org/10.34101/actaagrar/1/13738
Abstract

The gastrointestinal tract of poultry harbors a diverse and intricate microbiome that plays a crucial role in nutrient digestion and absorption, immune system development, and enhances resistance against pathogens. Maintaining a healthy state and proper production is fundamentally determined by the symbiosis between the host and microbes. Due to genetic and technological improvements, intensive growth rate can be associated with many pathological conditions, such as increased susceptibility to infections. Intestinal inflammation in poultry industries detrimentally affects productivity by hindering nutrient absorption and the efficient allocation of nutrients for growth. The host releases different biomarkers in response to inflammation. Hence, there is an utmost interest of reliable, precise, sensitive and robust biomarkers to evaluate both the gastrointestinal health status and inflammation in poultry. The aim of this study was to determine how the developed feed prototype (allithiamine) affects the community diversity in raised duck, and the relationship between gut microbiome composition and inflammatory factor as calprotectin, using targeted 16S rRNA gene amplicon sequencing and Chicken Calprotectin ELISA Kit.

References
  1. Bayan, L.; Koulivand, P.H.; Gorji, A. (2014): Garlic: a review of potential therapeutic effects. Avicenna J Phytomed. 2014 Jan; 4(1):1–14. PMID: 25050296; PMCID: PMC4103721.
  2. Biesiada-Drzazga, B.; Banaszewska, D.; Wencek, E. (2017): Comparison of the growth and body conformation of ducks reared in semi-intensive or intensive systems. Acta Sci. Pol. Zootechnica, 16(3), 43–52. DOI: 10.21005/asp.2017.16.3.06.
  3. Biro, A.; Gál, F.; Hegedűs, Cs.; Batta, Gy.; Cziáky, Z.; Peitl, B.; Stündl, L.; Gyémánt, Gy.; Remenyik, J. (2018): Isolation of allithiamine from Hungarian red sweet pepper seed (Capsicum annuum L.), Heliyon, Volume 4, Issue 12, https://doi.org/10.1016/j.heliyon.2018.e00997.
  4. Dal Pont, G.C.; Belote B.L.; Lee, A.; Bortoluzzi, C.; Eyng, C.; Sevastiyanova, M.; Khadem, A.; Santin, E.; Farnell, Y.Z.; Gougoulias, C.; Kogut, M.H (2021): Novel Models for Chronic Intestinal Inflammation in Chickens: Intestinal Inflammation Pattern and Biomarkers. Front Immunol,. 2021 May 12;12:676628. doi: 10.3389/fimmu.2021.676628. PMID: 34054868; PMCID: PMC8158159.
  5. D'Amico, F.; Nancey, S.; Danese, S.; Peyrin-Biroulet, L. (2021): A Practical Guide for Faecal Calprotectin Measurement: Myths and Realities. J Crohns Colitis. 13;15(1):152–161. doi: 10.1093/ecco-jcc/jjaa093.
  6. De Castro Junior, S.L.; Silva, I.J.O.da. (2020): The specific enthalpy of air as an indicator of heat stress in livestock animals. International journal of biometeorology. 65. DOI: 10.1007/s00484-020-02022-8.
  7. Deleu, S.; Machiels, K.; Raes, J.; Verbeke, K.; Vermeire, S. (2021): Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine. 66:103293. doi: 10.1016/j.ebiom.2021.103293.
  8. Ducatelle, R.; Eeckhaut, V.; Haesebrouck, F.; Van Immerseel, F. (2015): A review on prebiotics and probiotics for the control of dysbiosis: present status and future perspectives, Animal, Volume 9, Issue 1, Pages 43–48, https://doi.org/10.1017/S1751731114002584.
  9. Feng, W.; Ao, H.; Peng, C. (2018): Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines. Front Pharmacol. 23;9:1354. doi:10.3389/fphar.2018.01354.
  10. Fidler, G.; Tolnai, E.; Stagel, A. (2020): Tendentious effects of automated and manual metagenomic DNA purification protocols on broiler gut microbiome taxonomic profiling. Sci Rep 10, 3419 2020. https://doi.org/10.1038/s41598-020-60304-y
  11. Gessner, D.K.; Ringseis, R.; Eder, K. (2017): Potential of plant polyphenols to combat oxidative stress and inflammatory processes in farm animals. J Anim Physiol Anim Nutr (Berl). 101(4):605–628. doi: 10.1111/jpn.12579.
  12. Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.J. (2008): Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 15;27(2):104–19. doi: 10.1111/j.1365-2036.2007.03562.x.
  13. Huang, Y.; Lv, H.; Song, Y.; Sun, C.; Zhang, Z.; Chen, S. (2021): Community composition of cecal microbiota in commercial yellow broilers with high and low feed efficiencies. Poult Sci. 100(4):100996. doi: 10.1016/j.psj.2021.01.019. Epub 2021 Jan 18.
  14. Kumar, S.; Shang, Y.; Kim, W.K. (2019): Insight into dynamics of gut microbial community of broilers fed with fructooligosaccharides supplemented low calcium and phosphorus diets. Front Vet Sci 6:95. doi: 10.3389/fvets.2019.00095.
  15. Louis, P.; Flint H.J. (2017): Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol. 19(1):29–41. doi:10.1111/1462-2920.13589.
  16. Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. (2012): Diversity, stability and resilience of the human gut microbiota. Nature. 13;489(7415):220–30. doi: 10.1038/nature11550.
  17. Mohd Shaufi, M.A.; Sieo, C.C.; Chong, C.W.; Gan, H.M.; Ho, Y.W. (2015): Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog 7:4. doi: 10.1186/s13099-015-0051-7.
  18. Morgan, N.K. (2017): Managing gut health without reliance on antimicrobials in poultry. Anim. Prod. Sci. 57, 2270–2279 (2017). https://doi.org/10.1071/AN17288
  19. Morrison, D.J.; Preston, T. (2016): Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 3;7(3):189–200. doi:10.1080/19490976.2015.1134082.
  20. Nagalingam, N.A.; Lynch, S.V. (2012): Role of the microbiota in inflammatory bowel diseases. Inflamm Bowel Dis. 18:968–984. doi: 10.1002/ibd.21866.
  21. Oke, O.E.; Uyanga, V.A.; Iyasere, O.S.; Oke, F.O.; Majekodunmi, B.C.; Logunleko, M.O.– Abiona, J.A.; Nwosu, E.U.; Abioja, M.O.; Daramola, J.O.; Onagbesan, O.M. (2021): Environmental stress and livestock productivity in hot-humid tropics: Alleviation and future perspectives. J Therm Biol. 100:103077. doi: 10.1016/j.jtherbio.2021.103077.
  22. Poles, J.; Karhu, E.; McGill, M.; McDaniel, H.R.; Lewis, J.E. (2021): The effects of twenty-four nutrients and phytonutrients on immune system function and inflammation: A narrative review. J Clin Transl Res. 7(3):333–376. PMID: 34239993; PMCID: PMC8259612.
  23. Røseth, A.; Fagerhol, M.; Aadland, E.; Schjønsby, H. (1992): Assessment of the Neutrophil Dominating Protein Calprotectin in Feces: A Methodologic Study. Scand J Gastroenterol, 27(9):793–8. doi: 10.3109/00365529209011186
  24. Sands, B.E. (2015): Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology. 149(5):1275–1285.e2. doi:10.1053/j.gastro.2015.07.003.
  25. Sarangi, N.R.; Babu, L.K.; Kumar, A.; Pradhan, C.R.; Pati, P.K.; Mishra, J.P. (2016): Effect of dietary supplementation of prebiotic, probiotic, and synbiotic on growth performance and carcass characteristics of broiler chickens. Vet World 9:313–319. https://doi.org/10.14202/vetworld.2016.313-319
  26. Shi, N.; Li, N.; Duan, X.; Niu, H. (2017): Interaction between the gut microbiome and mucosal immune system. Military Medical Research volume, 4:14. doi:10.1186/s40779-017-0122-9.
  27. Shiraishi, J.I.; Yanagita, K.; Fukumori, R.; Sugino, T.; Fujita, M.; Kawakami, S.I.; McMurtry, J.P.; Bungo, T. (2011): Comparisons of insulin related parameters in commercial-type chicks: evidence for insulin resistance in broiler chicks. Physiol Behav 103:233–239. doi:10.1016/j.physbeh.2011.02.008
  28. Siddiqui, R.A.; Moghadasian, M.H. (2020): Nutraceuticals and nutrition supplements: challenges and opportunities. Nutrients 12:1593. https://doi .org/10.3390/nu12061593
  29. Sonawane, M.; Nimse, S.B. (2017): C-reactive protein: a major inflammatory biomarker. Anal Methods.; 9:3400–3413. doi: 10.1039/C7AY00711F
  30. Tedeschi, L.O.; Muir, J.P.; Naumann, H. D.; Norris, A. B.; Ramírez-Restrepo, C.A.; Mertens-Talcott, S.U. (2021): Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production. Front Vet Sci. 5;8:628445. doi: 10.3389/fvets.2021.628445.
  31. Tolnai, E.; Fauszt, P.; Fidler, G.; Pesti-Asboth, G.; Szilagyi, E.; Stagel, A.; Konya, J.; Szabo, J.; Stundl, L.; Babinszky, L.; Remenyik, J.; Biro, S.; Paholcsek, M. (2021): Nutraceuticals Induced Changes in the Broiler Gastrointestinal Tract Microbiota. mSystems. 2;6(2):e01124-20. doi: 10.1128/mSystems.01124-20.
  32. Zali, H.; Marashi, S.A.; Rezaei-Tavirani, M.; Toossi, P.; Rahmati-Roodsari, M.; Shokrgozar, M.A. (2007): On the mechanism of apoptosis-inducing activity of human calprotectin: zinc sequestration, induction of a signaling pathway, or something else? Med Hypotheses. 68(5):1012-5. doi:10.1016/j.mehy.2006.09.056
  33. Zhu, C.; Song, W.; Tao, Z.; Liu, H.; Zhang, S.; Xu, W.; Li, H. (2020): Analysis of microbial diversity and composition in small intestine during different development times in ducks, Poultry Science, 99, Issue 2, Pages 1096–1106, https://doi.org/10.1016/j.psj.2019.12.030.
  34. Zou, X.–Ji, J.–Wang, J.–Qu, H.–Shu, D.M.–Guo, F.Y.–Luo, C.L. (2018): Dextran sulphate sodium (DSS) causes intestinal histopathology and inflammatory changes consistent with increased gut leakiness in chickens. Br Poult Sci.; 59(2):166–172. doi: 10.1080/00071668.2017.1418498. Epub 2018 Jan 11. PMID: 29262695.