No. 1 (2022)
Articles

The effect of β-glucan, carotenoids, oligosaccharides and anthocyanins on bacteria groups of excreta in broiler chickens

Published May 26, 2022
Brigitta Csernus
1University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, Department of Animal Science
Sándor Biró
University of Debrecen, Faculty of Medicine, Department of Human Genetics, Debrecen
László Babinszky
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, Department of Animal Nutrition Physiology
László Stündl
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, Debrecen
Judit Remenyik
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, Debrecen
Georgina Pesti-Asbóth
University of Debrecen, Doctoral School of Animal Science, Debrecen, University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Food Technology, Debrecen
János Oláh
University of Debrecen, Farm and Regional Research Institute of Debrecen
Levente Czeglédi
University of Debrecen, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Animal Science, Biotechnology and Nature Conservation, Department of Animal Science, Debrecen
pdf

APA

Csernus, B., Biró, S., Babinszky, L., Stündl, L., Remenyik, J., Pesti-Asbóth, G., Oláh, J., & Czeglédi, L. (2022). The effect of β-glucan, carotenoids, oligosaccharides and anthocyanins on bacteria groups of excreta in broiler chickens. Acta Agraria Debreceniensis, (1), 15–20. https://doi.org/10.34101/actaagrar/1/10639

This study was conducted to examine the effect of natural compounds, such as β-glucan, carotenoids, oligosaccharides, and anthocyanins in the diet on bacteria gropus of excreta in Ross 308 broiler chickens. Chickens were fed 5 diets: control (basal) diet, a diet supplemented by β-glucan at 0.05%, and diets supplemented by carotenoids, oligosaccharides, or anthocyanins at 0.5% of each compound. On experimental day 19, excreta were collected to determine the proportion of Lactobacillus, Bifidobacterium, Campylobacter, Clostridium, and Escherichia coli. Samples were collected aseptically and snap-frozen in liquid nitrogen. Bacterial DNA was isolated from samples, then polymerase chain reaction using primer pairs designed to the 16S rDNA of bacterial groups were applied to define the proportion of the mentioned bacteria. Another universal primer pair was used to amplify a region of 16S rDNA of all the examined bacteria. Proportion of each bacterial groups was determined relatively to the intensity of universal PCR product band by gel documenting system and ImageLab software. Based on the results, carotenoids and anthocyanins increased the proportion of Bifidobacterium, which might imply the beneficial effects of the mentioned compounds on the bacteria composition of excreta.

Downloads

Download data is not yet available.
  1. Amit-Romach, E.–Sklan, D.–Uni, Z. (2004): Microflora Ecology of the Chicken Intestine Using 16S Ribosomal DNA Primers. Poult Sci, 83, 1093–1098.
  2. Brandt, L.–Kosche, K.–Greenwald, D.–Berkman, D. (1999): Clostridium Difficile-Associated Diarrhea in the Elderly. Am J Gastroenterol. 94, 3263–3266.
  3. Candrian, U.–Furrer, B.–Hofelein, C.–Meyer, R.–Jermini, M.–Luthy, J. (1991): Detection of Escherichia coli and identification of enterotoxigenic strains by primer-directed enzymatic amplification of specific DNA sequences. Int J Food Microbiol, 12, 339–351.
  4. Clavijo, V.–Flórez, M.J.V. (2018): The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poult Sci, 97, 1006–1021.
  5. Csernus, B.–Biró, S.–Babinszky, L.–Komlósi, I.–Jávor, A.–Stündl, L.–Remenyik, J.–Bai, P.–Oláh, J.–Pesti-Asbóth, G.–Czeglédi, L. (2020): Effect of Carotenoids, Oligosaccharides and Anthocyanins on Growth Performance, Immunological Parameters and Intestinal Morphology in Broiler Chickens Challenged with Escherichia coli Lipopolysaccharide. MDPI Animals, 10, 347.
  6. Das, Q.–Rashedul Islam, Md.–Lepp, D.–Tang, J.–Yin, X.–Mats, L.–Liu, H.–Ross, K.–Kennes, Y.M.–Yacini, H.–Warriner, K.–Marcone, M.F.–Diarra, M.S. (2020): Gut Microbiota, Blood Metabolites, and Spleen Immunity in Broiler Chickens Fed Berry Pomaces and Phenolic-Enriched Extractives. Front Vet Sci, 7, 150.
  7. Denis, M.–Refrégier-Petton, J.–Laisney, M.–Ermel, G.–Salvat, G. (2001): Campylobacter contamination in French chicken production from farm to consumers. Use of a PCR assay for detection and identification of Campylobacter jejuni and Camp. coli. J Appl Microbiol, 91, 255–267.
  8. Diaz-Carrasco, J.M.–Casanova, N.A.–Fernández Miyakawa, M.E. (2019): Microbiota, Gut Health and Chicken Productivity: What Is the Connection? MDPI Microorganisms, 7, 374.
  9. Dozois, C.M.–Daigle, F.–Curtiss, R. (2003): Identification of pathogen-specific and conserved genes expressed in vivo by an avian pathogenic Escherichia coli strain. PNAS, 100, 247–252.
  10. Gibson, G.R.–Roberfroid, M.B. (1995): Dietary modulation of the human colonic microbiota: introducing the concept of prebiotica. J Nutr, 125, 1401–1412.
  11. Homoki, J.R.–Nemes, A.–Fazekas, E.–Gyémánt, G.–Balogh, P.–Gál, F.–Al-Asri, J.–Mortier, J.–Wolber, G.–Babinszky, L. (2016): Anthocyanin composition, antioxidant efficiency, and α-amylase inhibitor activity of different Hungarian sour cherry varieties (Prunus cerasus L.). Food Chem, 194, 222–229.
  12. Hui, J.–Li, L.–Li, R.–Wu, M.–Yang, Y.–Wang, J.–Fan, Y.–Zheng, X. (2020): Effects of supplementation of β-carotene on the growth performance and intestinal mucosal barriers in layer-type cockerels. Anim Sci J, 91, 13344.
  13. Huyghebaert, G.–Ducatelle, R.–Van Immerseel, F. (2011): An update on alternatives to antimicrobial growth promoters for broilers. Vet J, 187, 182–188.
  14. Kim, H.–Cho, J.H.–Song, M.–Cho, J.H.–Kim, S.–Kim, E.S.–Keum, G.B.–Kim, H.B.–Lee, J-H. (2021): Evaluating the Prevalence of Foodborne Pathogens in Livestock Using Metagenomics Approach. J. Microbiol. Biotechol., 31, 1701–1708.
  15. Keestra, A.M.–de Zoete, M.R.–Bouwman, L.I.–Vaezirad, M.M.–van Putten, J.P. (2013): Unique features of chicken Toll-like receptors. Dev. Comp. Immunol., 41, 316–323
  16. Langendijk, P.S.–Schut, F.–Jansen, G.J.–Raangs, G.C.–Kamphuis, G.R.–Wilkinson, M.H.–Welling, G.W. (1995): Quantitative fluorescence in situ hybridization of Bifidobacterium spp. with genus-specific 16S rRNA-targeted probes and its application in fecal samples. Appl. Environ. Microbiol., 61, 3069–3075.
  17. Lucchini, F.–Kmet, V.–Cesena, C.–Coppi, L.–Bottazzi, V.–Morelli, L. (1998): Specific detection of a probiotic Lactobacillus strain in faecal samples by using multiplex PCR. FEMS Microbiol. Lett., 158, 273–278.
  18. Li, X.H.–Chen, Y.P. –Cheng, Y.F. –Yang, W.L.–Wen, C.–Zhou, Y.M. (2016): Effect of yeast cell wall powder with different particle sizes on ,he growth performance, serum metabolites, immunity and oxidative status of broilers. Anim. Feed Sci. Technol., 212, 81–89.
  19. Mancabelli, L. – Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A – Ossiprandi, M.C. – van Sinderen, D. (2016): Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology. 18: 4727–4738.
  20. Mikkelsen, L.–Bendixen, C.–Jakobsen, M.–Jensen, B. (2003): Enumeration of Bifidobacteria in Gastrointestinal Samples from Piglets. Appl. Environ. Microbiol., 69, 654–658.
  21. Moreno, Y.–Hernández, M.–Ferrús, M.–Alonso-Molina, J.–Botella, S.–Montes, R.–Hernandez, J. (2001): Direct detection of thermotolerant Campylobacters in chicken products by PCR and in situ hybridization. Res. Microbiol., 152, 577–582.
  22. Muthusamy, N.–Haldar, S.–Ghosh, T.K.–Bedford, M.R. (2011): Effects of hydrolyzed Saccharomyces cerevisia yeast and yeast cell wall components on live performance, intestinal histo-morphology and humoral immune response of broilers. Brit. Poult. Sci., 52, 694–703.
  23. Nagy, Z.–Daood, H.–Koncsek, A.–Molnár, H.–Helyes, L. (2017): The simultaneous determination of capsaicinoids, tocopherols, and carotenoids in pungent pepper powder. J. Liq. Chromat. Rel.Technol., 40, 199–209.
  24. Nemes, A.–Szőllősi, E. –Stündl, L. –Biró, A.–Homoki, J.R.–Szarvas, M.M.–Balogh, P.–Cziáky, Z.–Remenyik, J. (2018): Determination of flavonoid and proanthocyanidin profile of Hungarian sour cherry. MDPI Molecules, 23, 3278.
  25. Olanrewaju, H.A.–Thaxton, J.P.–Dozier, W.A., III–Purswell, J.–Roush, W.B.–Branton, S.L. (2006): A rewiev of lightning programs for broiler production. Int. J. Poult. Sci., 4, 301–308.
  26. Ozcan, E.–Sun J.–Rowley, D.C.–Sela, D.A. (2017): A human gut commensal ferments cranberry carbohydrates to produce formate. Appl. Environ. Microbiol., 83, e01097–e01017. doi: 10.1128/AEM.01097-17
  27. Pan, D.–Yu, Z. (2014): Intestinal microbiome of poultry and its interaction with host and diet. Gut Microbes, 5, 108–119.
  28. Pandey, K.R.–Naik, S.R.–Vakil, B.V. (2015): Probiotics, prebiotics and synbiotics—a review. J. Food Sci. Technol. 52, 7577–7587.
  29. Petersen, C.–Wankhade, U.D.–Bharat, D.–Wong, K., Mueller, J.E.–Chintapalli, S.V. (2019): Dietary supplementation with strawberry induces marked changes in the composition and functional potential of the gut microbiome in diabetic mice. J. Nutr. Biochem. 66, 63–69. doi: 10.1016/j.jnutbio.2019.01.004
  30. Reikvam, D. H.–Derrien, M.–Islam, R.–Erofeev, A.–Grcic, V.–Sandvik, A.–Johansen, F.-E. (2012): Epithelial-microbial crosstalk in polymeric Ig receptor deficient mice. Eur. J. Immunol. 42, 2959–2970. https://doi.org/10.1002/eji.201242543
  31. Rezaei, S.–Jahromi, M.S.–Liang, J.B.–Zulkifli, I.–Farjam, A.S.–Laudadio, V.–Tufarelli, V. (2015): Effect of oligosaccharides extract from palm kernel expeller on growth performance, gut microbiota and immune response in broiler chickens. Poult Sci. 94, 2414–2020.
  32. Rogier, E. W.–Frantz, A. L.–Bruno, M. E.–Wedlund, L.–Cohen, D. A.–Stromberg, A. J.–Kaetzel, C.S. (2014): Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. PNAS, 111, 3074–3079. https://doi.org/10.1073/pnas.13157 92111
  33. Rossi, M.–Amaretti, A. (2010): Probiotic properties of Bifidobacteria. Publisher: Caister Academic Press, Norfolk, UK. pp. 97–124.
  34. Siddiqui, R.A.–Moghadasian, M.H. (2020): Nutraceuticals and nutrition supplements: challenges and opportunities. Nutrients, 12, 1593. 10.3390/nu12061593.
  35. Skraban, J.–Dzeroski, S.–Zenko, B.–Tusar, L.–Rupnik, M. (2013): Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet. Microbiol. 165, 416–424.
  36. Stanley, D.–Geier, M.S.–Denman, S.E.–Haring, V.R.– Crowley, T.M.–Hughes, R.J.–Moore, R.J. (2013): Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet. Microbiol., 164.
  37. Stanley, D.– Hughes, R.J.–Moore, R.J. (2014): Microbiota of the chicken gastrointestinal tract: influence on health, productivity and disease. Appl. Microbiol. Biotechnol., 98, 4301–4310.
  38. Wang, R.F.–Cao, W.W.–Cerniglia, C.E. (1996): PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Appl. Environ. Microbiol., 62, 1242–1247.
  39. Xia, Y.–Kong, J.–Zhang, G.–Zhang, X.–Seviour, R.–Kong, Y. (2019): Effects of dietary inulin supplementation on the composition and dynamics of cecal microbiota and growth-related parameters in broiler chickens. Poult. Sci., 98, 6942–6953. doi: 10.3382/ps/pez483