Articles

The effect of sous-vide cooking on the antioxidant properties of oyster mushroom (Pleurotus ostreatus L.)

Published:
2024-06-03
Authors
View
Keywords
License

Copyright (c) 2024 by the Author(s)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

How To Cite
Selected Style: APA
Törős, G., Prokisch, J., Peles, F., Nagy, R., Nagy, J., & Béni, Áron. (2024). The effect of sous-vide cooking on the antioxidant properties of oyster mushroom (Pleurotus ostreatus L.). Acta Agraria Debreceniensis, 1, 177-184. https://doi.org/10.34101/actaagrar/1/13483
Abstract

Oyster mushrooms (Pleurotus ostreatus L.) are renowned for their antioxidant, antimicrobial, and prebiotic properties. This study explores the antioxidant characteristics, activity, and β-glucan content in freeze-dried mushroom samples, investigating the influence of sous-vide cooking. Uncooked freeze-dried P. ostreatus and three pre-cooked freeze-dried samples (70, 80, 90 °C through 4 hours) were analysed for Total Polyphenol Content (TPC), Total Flavonoid Content (TFC), Radical Scavenging (DPPH), Ferric Reducing Antioxidant Power (FRAP), and β-glucans content via HPLC and Total Dietary Fiber (TDF) via enzymatic gravimetric method. Results indicate that uncooked mushroom powder exhibited superior antioxidant capabilities compared to cooked samples. The sous-vide cooked (80 °C) mushrooms displayed the highest total phenolic and flavonoid content. Moreover, pre-cooked (70 °C) mushroom powder demonstrated the highest β-glucan content, significantly surpassing the uncooked control sample. Notably, pre-cooked groups (80, 90 °C) demonstrated significantly higher TDF levels compared to uncooked sample. This research offers valuable insights into the potential use of mushrooms as high-antioxidant, antimicrobial, and prebiotic food or feed supplements, with broad implications across various fields.

References
  1. Akyüz, M.; İnci, Ş.; Kırbağ, S. (2022): Evaluation of Antimicrobial, Antioxidant, Cytotoxic and DNA Protective Effects of Oyster Mushroom: Pleurotus pulmonarius (Fr.) Quel. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-022-07418-9
  2. Ali, N.M.; Yeap, S.; Yusof, H.M.; Beh, B.; Ho, W.; Koh, S.; Abdullah, M.P.; Alitheen, N.B.; Long, K. (2016): Comparison of free amino acids, antioxidants, soluble phenolic acids, cytotoxicity and immunomodulation of fermented mung bean and soybean. Journal of the Science of Food and Agriculture, 96(5), 1648–1658. https://doi.org/10.1002/jsfa.7267
  3. Aliaño-González, M.J.; Barea-Sepúlveda, M.; Espada-Bellido, E.; Ferreiro-González, M.; López-Castillo, J.G.; Palma, M.; Barbero, G.F.; Carrera, C. (2022): Ultrasound-assisted extraction of total phenolic compounds and antioxidant activity in mushrooms. Agronomy, 12(8), 1812. https://doi.org/10.3390/agronomy12081812
  4. Aviles, M.V.; Naef, E.F.; Lound, L.H.; Olivera, D.F. (2020): Impact of sous vide cooking on nutritional quality of meat. 9(2020), 1-3. https://dx.doi.org/10.19080/NFSIJ.2020.10.555789
  5. Bai, S.; You, L.; Ji, C.; Zhang, T.; Wang, Y.; Geng, D.; Gao, S.; Bi, Y.; Luo, R. (2022): Formation of volatile flavor compounds, maillard reaction products and potentially hazard substance in China stir-frying beef saozi. Food Research International, 159, 111545. https://doi.org/10.1016/j.foodres.2022.111545
  6. Baldwin, D.E. (2012): Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1(1), 15–30. https://doi.org/10.1016/j.ijgfs.2011.11.002
  7. Bhekti Rahimah, S.; Firmansyah, A.; Maharani, W.; Andriane, Y.; Santosa, D.; Romadhona, N. (2023): Active compound test: Ethanolic extract of White Oyster Mushroom (Pleurotus ostreatus) Using HPLC and LC-MS. F1000. Research, 10, 1233. https://doi.org/10.12688/f1000research.73693.2
  8. Boonsong, S.; Klaypradit, W.; Wilaipun, P. (2016): Antioxidant activities of extracts from five edible mushrooms using different extractants. Agriculture and Natural Resources, 50(2), pp. 89–97. https://doi.org/10.12688/f1000research.73693.2
  9. Bıyıklı, M.; Akoğlu, A.; Kurhan, Ş.; Akoğlu, İ.T. (2020): Effect of different Sous Vide cooking temperature-time combinations on the physicochemical, microbiological, and sensory properties of turkey cutlet. International Journal of Gastronomy and Food Science, 20, 100204. https://doi.org/10.1016/j.ijgfs.2020.100204
  10. Cui, Z.; Yan, H.; Manoli, T.; Mo, H.; Bi, J.; Zhang, H. (2021): Advantages and challenges of sous vide cooking. Food Science and Technology Research, 27(1), 25–34. https://doi.org/10.3136/fstr.27.25
  11. Diamantopoulou, P.; Fourtaka, K.; Melanouri, E.M.; Dedousi, M.; Diamantis, I.; Gardeli, C.; Papanikolaou, S. (2023): Examining the Impact of Substrate Composition on the Biochemical Properties and Antioxidant Activity of Pleurotus and Agaricus Mushrooms. Fermentation, 9(7), 689. https://doi.org/10.3390/fermentation9070689
  12. Egra, S.; Kusuma, I.W.; Arung, E.T.; Kuspradini, H. (2019): The potential of white-oyster mushroom (Pleurotus ostreatus) as antimicrobial and natural antioxidant. Biofarmasi J. Nat. Prod. Biochem, 17(1), 14–20. https://doi.org/10.13057/biofar/f170102
  13. Gallotti, F. (2019): Production of Functional Ingredients Using Bioactive Compounds from Pleurotus Ostreatus. Proceedings of the XXIV Workshop on the Developments in the Italian PhD Research on Food Science, Technology and Biotechnology, 253–255.
  14. Gao, X.; Li, X.; Mu, J.; Ho, C.T.; Su, J.; Zhang, Y.; Lin, X.; Chen, Z.; Li, B.; Xie, Y. (2020): Preparation, physicochemical characterization, and anti-proliferation of selenium nanoparticles stabilized by Polyporus umbellatus polysaccharide. International journal of biological macromolecules, 152, 605–615. https://doi.org/10.1016/j.ijbiomac.2020.02.199
  15. Garbelotti, M.L.; Marsiglia, D.A.P.; Torres, E.A. (2003): Determination and validation of dietary fiber in food by the enzymatic gravimetric method. Food chemistry, 83(3), 469–473. https://doi.org/10.1016/S0308-8146(03)00226-7
  16. He, Y.; Wang, B.; Wen, L.; Wang, F.; Yu, H.; Chen, D.; Su, X.; Zhang, C. (2022): Effects of dietary fiber on human health. Food Science and Human Wellness, 11(1), 1–10. https://doi.org/10.1016/j.fshw.2021.07.001
  17. Inyod, T.; Ayimbila, F.; Payapanon, A.; Keawsompong, S. (2022): Antioxidant activities and prebiotic properties of the tropical mushroom Macrocybe crassa. Bioactive Carbohydrates and Dietary Fibre, 27, 100298. https://doi.org/10.1016/j.bcdf.2021.100298
  18. Li, Y.; Quan, W.; Jia, X.; He, Z.; Wang, Z.; Zeng, M.; Chen, J. (2021): Profiles of initial, intermediate, and advanced stages of harmful Maillard reaction products in whole-milk powders pre-treated with different heat loads during 18 months of storage. Food Chemistry, 351, 129361. https://doi.org/10.1016/j.foodchem.2021.129361
  19. Li, Y.; Jia, X.; Wang, Z.; He, Z.; Zeng, M.; Chen, J. (2022): Changes in harmful Maillard reaction products in low-temperature long-time pasteurization-treated milks reconstituted from whole-milk powders after different storage times. Journal of Food Composition and Analysis, 106, 104280. https://doi.org/10.1016/j.jfca.2021.104280
  20. Mutukwa, I.B.; Hall, C.A.; Cihacek, L.; Lee, C.W. (2019): Evaluation of drying method and pretreatment effects on the nutritional and antioxidant properties of oyster mushroom (Pleurotus ostreatus). Journal of Food Processing and Preservation, 43(4), e13910. https://doi.org/10.1111/jfpp.13910
  21. Nasirpour, A.; Saeidy, S. (2021): Maillard Modification. Physicochemical and Enzymatic Modification of Gums: Synthesis, Characterization and Application, 77. https://doi.org/10.1007/978-3-030-87996-9_4
  22. Nemes, A.; Szőllősi, E.; Stündl, L.; Biró, A.; Homoki, J.R.; Szarvas, M.M.; Balogh, P.; Cziáky, Z.; Remenyik, J. (2018): Determination of flavonoid and proanthocyanidin profile of hungarian sour cherry. Molecules, 23(12), 3278. https://doi.org/10.3390/molecules23123278
  23. Patel, Y.; Naraian, R.; Singh, V.K. (2012): Medicinal properties of Pleurotus species (oyster mushroom): A review. World Journal of Fungal and Plant Biology, 3(1), 1–12. https://doi.org/10.5829/idosi.wjfpb.2012.3.1.303
  24. Pérez-Vendrell, A.M.; Guasch, J.; Francesch, M.; Molina-Cano, J.L.; Brufau, J. (1995): Determination of β-(1–3),(1–4)-D-glucans in barley by reversed-phase high-performance liquid chromatography. Journal of Chromatography A, 718(2), 291–297. https://doi.org/10.1016/0021-9673(95)00694-X
  25. Petraglia, T.; Latronico, T.; Fanigliulo, A.; Crescenzi, A.; Liuzzi, G. M.; Rossano, R. (2023): Antioxidant activity of polysaccharides from the edible mushroom Pleurotus eryngii. Molecules, 28(5), 2176. https://doi.org/10.3390/molecules28052176
  26. Sołowiej, B.G.; Nastaj, M.; Waraczewski, R.; Szafrańska, J.O.; Muszyński, S.; Radzki, W.; Mleko, S. (2023): Effect of polysaccharide fraction from oyster mushroom (Pleurotus ostreatus) on physicochemical and antioxidative properties of acid casein model processed cheese. International Dairy Journal, 137, 105516. https://doi.org/10.1016/j.idairyj.2022.105516
  27. Tang, B.; Lai, P.; Weng, M.; Wu, L.; LI, Y. (2022): Optimization of submerged fermentation conditions for biosynthesis of ergothioneine and enrichment of selenium from Pleurotus eryngii 528. Food Science and Technology, 42. https://doi.org/10.1590/fst.40022
  28. Thathsarani, A.P.K.; Alahakoon, A.U.; Liyanage, R. (2022): Current status and future trends of sous vide processing in meat industry; A review. Trends in Food Science & Technology. 129, 353-363. https://doi.org/10.1016/j.tifs.2022.10.009
  29. Tokarczyk, G.; Felisiak, K.; Adamska, I.; Przybylska, S.; Hrebień-Filisińska, A.; Biernacka, P.; Bienkiewicz, G.; Tabaszewska, M. (2023): Effect of Oyster Mushroom Addition on Improving the Sensory Properties, Nutritional Value and Increasing the Antioxidant Potential of Carp Meat Burgers. Molecules, 28(19), 6975. https://doi.org/10.3390/molecules28196975
  30. Törős, G.; El-Ramady, H.R.H.; Prokisch, J. (2022): Edible mushroom of Pleurotus spp.: a case study of oyster mushroom (Pleurotus ostreatus L.). Environment, Biodiversity and Soil Security, 6(2022), 51–59. https://doi.org/10.21608/jenvbs.2022.117554.1161
  31. Törős, G.; El-Ramady, H.R.H.; Prokisch, J.; Velasco, F.; Llanaj, X.; Nguyen, D.H.; Peles, F. (2023a): Modulation of the Gut Microbiota with Prebiotics and Antimicrobial Agents from Pleurotus ostreatus Mushroom. Foods, 12(10), 2010. https://doi.org/10.3390/foods12102010
  32. Törős, G.; Peles, F.; Elramady, H.R.H.; Prokisch, J. (2023b): To What Extent Can Maillard Reaction Products Influence the Probiotic and Harmful Bacteria? Egyptian Journal of Soil Science, 63(2),0–0. https://doi.org/10.21608/ejss.2023.189687.1569
  33. Wang, J.; Jiang, Q.; Huang, Z.; Wang, Y.; Roubik, H.; Yang, K.; Cai, M.; Sun, P. (2023): Solid-State Fermentation of Soybean Meal with Edible Mushroom Mycelium to Improve Its Nutritional, Antioxidant Capacities and Physicochemical Properties. Fermentation, 9(4), 322. https://doi.org/10.3390/fermentation9040322
  34. Xu, B.J.; Chang, S.K.C. (2007): A Comparative Study on Phenolic Profiles and Antioxidant Activities of Legumes as Affected by Extraction Solvents. Journal of Food Science, 72(2). https://doi.org/10.1111/j.1750-3841.2006.00260.x
  35. Zavadlav, S.; Blažić, M.; Van de Velde, F.; Vignatti, C.; Fenoglio, C.; Piagentini, A.M.; Pirovani, M.E.; Perotti, C.M.; Bursać Kovačević, D.; Putnik, P. (2020): Sous-vide as a technique for preparing healthy and high-quality vegetable and seafood products. Foods, 9(11), 1537. https://doi.org/10.3390/foods9111537