Search

Published After
Published Before

Search Results

  • Grapevine and apple replant disease in Hungary
    57-61.
    Views:
    154

    Field experiment was conducted to study the replant problems of grapevine and apple. Plantings were in three different fields: on virgin soil, on apple replant soil and on vine replant soil. Each field was planted with 60 pieces of grafted vine (variety Bianca on rootstock Berl. X Rip. T.K. 5BB) and 60 pieces of grafted apple (variety Gloster on rootstock MM. 106). Fungicide (BUVICID K with 50 % captan agent, 0.5 g/1 1 soil) and nematocide (VYDATE 10 G with 10 % oxamil agent, 0.03 g/1 I soil) treatments were used in the soil in order to identify the causal factor of the problem.

    Biological soil test was conducted to test 17 soil samples of II wine districts and vine growing fields in plastic pots, under shading net. No root pieces were left in the soil. Two bud-cuttings of the Bed. X Rip. T 5C rootstock varieties were used as test plants. In each case, samples were taken from the vineyard and from the virgin soil. One fourth of the soil from the vineyard was left untreated and the other three part was treated with nematocide, fungicide or heat.

    The results of the field experiment suggest that there was no problem growing grapevine after apple and apple after grapevine, but both species had been inhibited growing after itself. The fungicide and nematocide treatments did not succeed in determining the casual factor of the problem. Heat treatment of replant soil (in pot test) was useful in AS and VNS soils.

    Results of biological soil test suggest, that grapevine replant problem do not occur in every vineyard. In fifty percent of soils, no significant differences between the treatments for shoot length, weight of cane, length, diameter and wood:ratio of the fourth internode were observed. In one case, difference was not found in any of the measured characters. However, fruiting bodies of Roesleria pallida (Pers.)Sacc. and the mycelium of Rosellinia necatrix Prill. were observed in this sample. In other samples, there was no significant difference between the treatments, but nematode and fungus infection appeared to be involved in increased shoot growth in nematocide and fungicide treated plants (mycelium of Rosellinia necatrix was detected). In other samples, the fungus infection caused significant difference between the virgin, untreated and fungicide treated soils and infection of Rosellinia necatrix was observed.

  • Anatomical relations of root formation in strawberry
    71-75.
    Views:
    215

    Anatomical relations of root formation are traced throughout the life cycle of the strawberry plant from the germinating seed up to the runners of the adult plant. Histological picture of the root changes a lot during the development of the plant. First the radicle of the germ grows to a main root, which makes branches into side roots and later adventitious roots are formed on the growing rootstock or rhizome. The anatomy of the different types of roots is also conspicuously different. First tiny branches appear relatively early after germination on the seedling's radicle, but soon the hypocotyl of the seedling thickens and develops side roots, which are already somewhat stronger. During this interval, the first true leaves are formed. The 4th or 5th of them being already tripartite, and the initiation of new roots extends into the epicotylar region of the shoot. The second years growth starts with the development of reproductive structures, inflorescences and runners starting from the axils of the new leaves. Near the tips of the runners below the small bunch of leaves, new root primordia are initiated. The tiny radicle of the germ develops a cortical region of 5-6 cell layers. Cells of the central cylinder are even smaller than the cortical parenchyma and include 3-4 xylem and 3-4 phloem elements as representatives of the conductive tissue. Roots originating from the shoot region are much more developed; their cortical zone contains 17-20 cell layers, whereas the central cylinder is about half as large. In the next year, new roots are formed at the base of the older leaves. These roots differ hardly from those of the last season in size and volume, however, they are recognised by colour and their position on the rhizome. The roots of the last year are dark, greyish-black, and grow on the lower third length of the rhizome, on the contrary, the new ones, on the upper region, are light brown. Roots starting from the shoot or rhizome are, independently from their age or sequence, mainly rather similar in size and diameter, thus being members of a homogenous root (homorhizous) system, i.e. without a main root. Plants developed and attained the reproductive phase develop in the axils of the leaves runners being plagiotropic, i.e. growing horizontally on the surface of the soil. The runners elongate intensely, become 150-200 mm, where some long internodes bear a bunch of small leaves and root primordia on short internodes and a growing tip. Runners do not stop growing, generally, further sections of 15-25 cm length are developed according to the same pattern, with small leaves on the tip. The growing tip of the runners is obliquely oriented, and small, conical root primordia are ready to start growing as soon as they touch the soil. The roots penetrate the soil, quickly, and pull, by contraction, the axis of the runner downwards, vertically, developing a new rhizome. The short internodes elongate a little and start developing adventitious roots. At the end of the growing season, the plantlets arisen on the rooted nods of runners are already similar to the original plants with homogenous root system. On the side of the adventitious roots, new branches (side-roots) are formed. The root-branches are thinner but their capillary zone is more developed being more active in uptake of water and nutrients. The usual thickening ensues later.

  • Grapevine - and apple - replant disease in Hungary
    29-33.
    Views:
    128

    Field experiment was conducted to study the replant problems of grapevine and apple. Plantings were in three different fields: on virgin soil, on apple replant soil and on vine replant soil. Each field was planted with 60 pieces of grafted vine (variety Bianca on rootstock Berl. X Rip. T.K. 5BB) and 60 pieces of grafted apple (variety Gloster on rootstock MM. 106). Fungicide (BUVICID K with 50% captan agent, 0.5 g/1 1 soil) and nematocide (VYDATE 10 G with 10% oxamil agent, 0.03 g/1 1 soil) treatments were used in the soil in order to identify the causal factor of the problem.

    Biological soil test was conducted to test 17 soil samples of 11 wine districts and vine growing fields in plastic pots, under shading net. No root pieces were left in the soil. Two bud-cuttings of the Berl. X Rip. T 5C rootstock varieties were used as test plants. In each case, samples were taken from the vineyard and from the virgin soil. One fourth of the soil from the vineyard was left untreated and the other three part was treated with nematocide, fungicide or heat.

    The results of the field experiment suggest that there was no problem growing grapevine after apple and apple after grapevine, but both species had been inhibited growing after itself. The fungicide and nematocide treatments did not succeed in determining the casual factor of the problem. Heat treatment of replant soil (in pot test) was useful in AS and VNS soils.

    Results of biological soil test suggest, that grapevine replant problem do not occur in every vineyard. In fifty percent of soils, no significant differences between the treatments for shoot length, weight of cane, length, diameter and wood:ratio of the fourth internode were observed. In one case, difference was not found in any of the measured characters. However, fruiting bodies of Roesleria pallida (Pers.) Sacc. and the mycelium of Rosellinia necatrix Prill. were observed in this sample. In other samples, there was no significant difference between the treatments, but nematode and fungus infection appeared to be involved in increased shoot growth in nematocide and fungicide treated plants (mycelium of Rosellinia necatrix was detected). In other samples, the fungus infection caused significant difference between the virgin, untreated and fungicide treated soils and infection of Rosellinia necatrix was observed.