Search

Published After
Published Before

Search Results

  • Effect of hydroponic and peat-free media in transplant production of Rudbeckia hirta varieties under different photoperiodic lighting and their photosynthetic parameters
    110-117
    Views:
    367

    The purpose of this research was to determine the effects of varieties, different light conditions (short day, long day, natural short day with light pollution), and different growing media (perlite, peat-free, peat-based, aeroponics system) on Rudbeckia hirta plant production under controlled conditions (greenhouse). The morphological effects of each treatment (photoperiodic lightings and media) on different Rudbeckia varieties determined at 11 weeks-old ’Napfény’, ’Toto Gold’, ’Autumn Colors’, ’Prairie Sun’ and 16 weeks-old ’Napfény’. Plantlets received 12 hours daylight did not initiate flowers, remained stage of the leaf rosette in case of all varieties. The 14 hours light treatment in the aeroponics system and the same treatment in perlite and control (natural short day with 14 hours light pollution) plantlets had developed inflorescences or flower buds. The inflorescence axis of ‘Napfény’ was appeared at 13 weeks under long-day conditions, with 1.7 (perlite) - 2.7 (aeroponics) flower buds in 16 weeks. ’Toto Gold’, ’Autumn Colors’, ’Prairie Sun’ varieties developed inflorescences at 8 weeks, 14 hours aeroponics system resulted in the most of flower buds (’Toto Gold’: 6.5, ’Autumn Colors’: 3.25,’Prairie Sun’: 4.8 flower buds) at 11 weeks. Long daylight manipulation could be minimized crop times and achieved flowering potted plants at 11 weeks. The peat-based and peat-free media effect was observed on ‘Autumn Colors’. The number of leaves of peat-free ‘Autumn Colors’ transplants (16.8-20.3) was significantly higher than peat-based media (13.5-15.5). Other morphological parameters were not affected by the media treatments.

  • Giant reed (Arundo donax L.) from ornamental plant to dedicated bioenergy species: review of economic prospects of biomass production and utilization
    39-46.
    Views:
    483

    Giant reed (Arundo donax L.) is a perennial, herbaceous grass, it has been spread all over the world from continent to tropical conditions by human activities. In continental climate, especially Hungary, it has been considered as ornamental species, due to its decorative appearance, striped variants’ colour of leaves, long growing season and low maintenance requirements. It does not produced viable seeds, so it can be propagated vegetative ways by rhizomes or stem cuttings and by in vitro biotechnology methods. Because of its growth habits and good adaptation capability, it has been considered invasive weed primarily in coastal regions in warmer climate areas. In the previous century, giant reed produced for paper/cellulose/viscose production, woodwind musical instruments, stakes for plants or fishing rods etc. Over the last few decades, it has been produced for bioenergy purposes (bioethanol, biogas, direct combustion) or utilize as chemical basic compounds or construction materials. It has been considered a dedicated promising biomass crops thanks to high biomass production, high energy balance of cultivation and adaptability of different kind of soils and conditions. The objective of the present paper is to overview the most significance literature data on giant reed production and utilization, compare to own experimental data and economic calculations and to determine some critical factors, advantages and disadvantages of giant reed production compare to other biomass species.

  • Obtention of new ornamental leaf variants of giant reed (Arundo donax L.) originated from somatic embryogenesis and their photosynthetic parameters
    18-24.
    Views:
    415

    Giant reed (Arundo donax L.) is a perennial rhizomatous herbaceous plant, it has been widespread all over the world by human activities. It is a 2-8 meter high, polyploid, sterile species (not produce viable seeds), it can be propagated only by vegetative methods (rhizomes, stem cuttings, in vitro biotechnological methods). It has considered promising dedicated energy crop thanks to high biomass production (20-40 dry tons per hectare depending on microclimate), adaptability of different kind of soils and environment and low energy input required for its cultivation. It has been utilized for energetic purposes, biogas/bioethanol production, cellulose/paper production and ornamental purposes. The objectives of the present study were to determine morphological properties of new ornamental giant reed leaf variants originated from somatic embryogenesis and to evaluate their photosynthetic pigment content and photosynthetic activities. The most typical changes was the appearance of different colour (white, yellow, light green) longitudinal stripes on leaves (also on petiole and on leaf blade). It was significant differences (p<0.05) between green and leaf variants in case of photosynthetic pigments content and photosynthetic activity (Fv/Fm value). There was no detectable chlorophyll a or b content in the white bands of leaves and albino shoots. Total chlorophyll content of the white striped leaf variety was more than twice than the light green leaves. Photosynthetic activity and content of photosynthetic pigments also confirm and determine the morphological characteristics and growth habit of leaf variants.

  • Tending operation models for black locust (Robinia pseudoacacia L.) stands growing on sandy soils in Hungary
    55-57.
    Views:
    204

    A more intensive integrated research and development approach to the work carried out on the growth on sandy soils of stands of black locust (Robinia pseudoacacia L.) has been adopted in recent years, revealing several factors influencing stand growth. The fact that certain ecological factors influencing fundamentally the growth of trees have become unfavourable in Hungary in recent years has led to the more extensive use of black locust in the course of afforestation and forest regeneration schemes. The study presents a new,  simplified tending operation model for black locust stands and age, growing space and target diameter models suitable for qualitaty log production and for mass assortments. The simplicity of these practice-oriented
    models may foster the qualitative development of black locust management in Hungary and in some other countries where this tree species may gain greater acceptance by landowners and the forest industry.

  • Improved clonal approaches to growing black locust (Robinia pseudoacacia L.) in Hungary: a case study
    53-56.
    Views:
    238

    In Hungary black locust (Robinia pseudoacacia L.) is considered as an important exotic stand-forming tree species and due to climate change effects its importance is increasing in many other countries. It has some desirable characteristics from both the practical and research standpoints. As a result of a partly new black locust selection programme new black locust clones were improved and a technology was developed for mass clonal micropropagation of juvenile trees. Clone trials with micropropagated plants were established in the country for evaluating the juvenile growth and the stem form of promising black locust clones under marginal site conditions. Significant differences (P<5%) were found for stem form value which partly verified the genetic gain of the selected clones against the common black locust. It was also proved that tissue culture could offer partly new prospects for the rapid mass cloning of selected genotypes.

  • Cost-effective plantlet production and wintering method of virginia fanpetals (Sida hermaphrodita L. Rusby)
    137-141.
    Views:
    198

    The main goal of this research was to work out programmable, cost-effective and industrial scale technologies of mass propagation from the seeds of rootstock nurseries of undomesticated American populations of Sidahermaphrodita. During our previou`s seed treatment experiments, it was concluded that around 60% of the Virginia fanpetalsseeds collected during the four cropyears can be considered as high quality, infection-free, normally imbibing and germinating seeds (Kurucz et al., 2013a,b). The experiments performed with the nurse-in-tray method developed by us showed that the summer-autumn nurse-in-tray plantlet production and unprotected wintering of Virginia fanpetals with properly pre-treated and fractioned seeds is a promising new method. No weeds appear between the plants, but only on the side of the cases during plantlet production. The investment cost of the method is minimal. There are no heating costs and this phytotechnique can be easily and properly mechanised. Plantlet production can be performed near the large-scale plots. After exploring the root and shoot system, it was concluded that the nurse-in-tray method is suitable for producing plantlets with hardened and strong roots. Scheduled plantlets can be produced in an industrial scale volume by the time of early spring (March) plantlet planting. The excavateof plantlets can be flexibly adjusted to the needs; they may even grow in the plantlet cases for a whole year. We think that these innovative plantlet production and wintering methods which are suitable for large-scale use will make Virginia fanpetals a proper feedstock for the constant supply of the Biomass Supply Chain both in Hungary and in European countries which are in the same climate zone. The comparative analysis of the costs of this procedure calls for further research.