Search

Published After
Published Before

Search Results

  • Evaluation of vermicompost application and stress of dehydration on mullein medicinal plants
    69-77.
    Views:
    114

    The use of organic fertilizers is one of the suitable solutions in the organic production of medicinal plants due to its good effect in improving soil properties, reducing environmental effects, and better plant growth. To investigate the effect of vermicompost organic fertilizer application and water stress on some morphological and physiological traits of the Mullein medicinal plant, research was conducted at Isfahan Azad University in the form of split plots in the form of a randomized complete block design with 4 replications. The test factors included the application of vermicompost organic fertilizer at three levels of 0, 4, and 8 kg per square meter of soil and water stress at two levels of normal irrigation and irrigation at the time of 50% of the soil's agricultural capacity as the main treatment in research farm conditions. The results of the experiment showed that the application of vermicompost organic fertilizer and water stress improved the morphological and physiological characteristics of the Mullein medicinal plant compared to the control, i.e. no application of organic fertilizers. The results showed that the highest number of secondary branches, number of flowers of the secondary stem, diameter of flowering stem, the diameter of flower, and fresh weight of shoot in the Mullein medicinal plant were obtained by applying vermicompost organic fertilizer at the rate of 4 and 8 kg of soil. The application of vermicompost organic fertilizer at the rate of 8 kg in the soil increased flavonoids compared to the non-use of vermicompost treatment. However, to improve the vegetative growth and increase the reproductive efficiency of the Mullein plant and reduce production costs, the use of vermicompost organic fertilizer is recommended at the rate of 4 and 8 kg of soil, respectively.

  • Estimating of water consumption of cherry trees
    15-17.
    Views:
    190

    Despite of its importance there is no exact information on water use of new scion/rootstock composite trees, which would be needed to optimized irrigation. Our research purpose is to define exact water-demand of different rootstock/scion composite trees, calculating seasonal weather changes and by using the results decrease irrigation costs. The investigations are carried out in Soroksár, at the Experimental Farm of Corvinus University of Budapest in May 2008. From among the investigated trees two are budded onto Prunus mahuleb `Érdi V' seedlings, two on "Korponay' seedlings. The sapflow measurements are carried out using Dynamax Flow 32 equipment with Dynagage trunk sensors. The first daily maximum of sapflow was around 10:00 a.m. (2.5 kghour I), the second maximum was always between 14:00-15:00 p.m. (2 kgday- I). Comparing to the very intensive morning water uptake by 20:00 p.m. the water flow slowly reached the minimal level. Significant differences can be seen on rootstocks: trees on `Korponay' rootstock always showed more intensive sapflow and a higher morning peak than trees on `Árdi V'. But later during the day they have the same run.Based on our results the water quantity transpired only by the trees reached in May 86-104 mm, while the precipitation was only 42.4 mm. This means a 40-60 mm deficit in the orchard, which should have been supplied by irrigation despite of the satisfying horticultural performance of the orchard. In the first half of the month beside the steady vapor pressure deficit the shoot and leaf surface growth could cause the increased sapflow.

  • Influence of different growth regulators on the in vitro morphogenesis of an ornamental variety of carnation
    55-57.
    Views:
    142

    Callus formation, as a prerequisite for the induction of somaclonal variability, was achieved successfully with certain molar ratios between 2,4-dichlorophenoxyacetic acid and benzyladenine. Regeneration of new plants from shoot apex meristems could be significantly improved by the combined addition of very low amounts of indolebutiric acid, benzyladenine and gibberelic acid, dissolved in the Murashige-Skoog nutrient medium. These in vitro treatments may contribute to a more efficient micropropagation of the Rimini variety of carnation.

  • In vitro multiplication and hardening of grapevine plants in aeriated media
    15-18.
    Views:
    212

    In vitro cultures have widely been used in horticulture for rapid multiplication of new varieties and clones as well as to produce pathogen-free stock material. To improve efficient hardening and transfer in vitro grown grapevine plants were multiplied by cutting them into single-node internodes with the whole leaf. Microcuttings including the shoot tips were rooted in granulated perlite moisted with tapwater under sterile conditions. After 2-3 weeks the rooted microcuttings were supplied by nutrients and hardened by gradual opening and finally by complete removal of the lids of jars or plastic boxes used for growth. Using this method microcuttings of Vitis vinifera cvs. „Chardonnay", „Cabernet franc", „Riesling" and „Sauvignon blanc" and the rootstock varieties Vitis riparia x Vitis cinerea cv. „Barrier" and Vitis berlandieri x Vitis rupestris cv. „Richter 110" formed new roots and shoots and 100% of the tested plants survived the acclimatization procedure. Similar results were obtained when perlite was replaced with rockwool-, or pit-pot blocks. This method may highly increase the efficiency of producing pathogen-free propagating material and new transgenic lines.

  • Application of the Jerusalem artichoke (Helianthus tuberosus L.), as a plant origin medium additive, during the micropropogation of Ada keiliana
    61-64.
    Views:
    188

    A procedure for in vitro propagation of Ada keiliana seedlings are suited for acclimatization, was worked out. M medium was supplemented, with Jerusalem artichoke, as plant origin complex additive. The apply of JAD (1,5g/flask) gave the best response, considering the shoot (29 mm), and the root development (24,9) mm) too. The plantlets with satisfying growth (25-30 mm, 4-5 roots) were transferred in small pine bark: Novobalt peat: coconut fibres: perlit (2:3:1:1) mix, among greenhouse circumstances.