Vol. 27 (2021)
Articles

Effects of silicon in plants with particular reference to horticultural crops - Review article

Published July 21, 2021
O. Bat-Erdene
Hungarian University of Agriculture and Life Sciences, Department of Plant Physiology and Plant Ecology, 1118 Budapest, Ménesi str 44, Hungary; Mongolian University of Life Science, Plant Protection Research Institute, Forest, pastures conservation-restoration laboratory, 210153, Ulaanbaatar, Mongolia
Dr. Anita Szegő
Department of Plant Physiology and Plant Biochemistry, Hungarian University of Agriculture and Life Sciences
M. Gyöngyik
Department of Plant Physiology and Plant Biochemistry, Hungarian University of Agriculture and Life Sciences
Dr. Iman Mirmazloum
Department of Plant Physiology and Plant Biochemistry, Hungarian University of Agriculture and Life Sciences
Prof. István Papp
Department of Plant Physiology and Plant Biochemistry, Hungarian University of Agriculture and Life Sciences
pdf

APA

Bat-Erdene, O., Szegő, A., Gyöngyik, M., Mirmazloum, I., & Papp, I. (2021). Effects of silicon in plants with particular reference to horticultural crops - Review article. International Journal of Horticultural Science, 27, 95–105. https://doi.org/10.31421/ijhs/27/2021/9096

Silicon (Si) has long been considered as non-essential element for plant’s growth and production. Numerous efforts are being made for the discovery of its beneficial effects with large scale studies laying foundation for new findings and hypotheses. Therefore, Si has been suggested to be a quasi-essential element due to its positive effects against biotic and abiotic stresses alike. Though Si is the second most abundant element in the soil profile, its availability to plants is limited to the form of monosilicic acid only. Besides, plants’ ability to take-up Si and use it in their physiological processes also depends on the available transporters associated with it. Thus, the present review covers uptake and transport of silicon in plants as well as Si mediated physiological processes, including mechanisms underlying induced tolerance against biotic and abiotic stresses with a particular emphasis on horticultural species.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...
  1. Adrees, M., Ali, S., Rizwan, M., Zia-Ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., Irshad, M. K. (2015): Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology Environmental Safety 119: 186–197. https://doi.org/10.1016/j. ecoenv.2015.05.011
  2. Ahmed, M., Qadeer, U., Aslam, M. (2011): Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research. 6: 594–607.
  3. Bakhat, H. F., Hanstein, S., Schubert, S. (2009): Optimal level of silicon for maize (Zea mays L. c.v. AMADEO) growth in nutrient solution under controlled conditions.
  4. Barber, D. A., Shone, M. G. T. (1967): The Initial Uptake of Ions by Barley Roots: III. The uptake of cations. Journal of Experimental Botany. 18: 631–643.
  5. Barreto, R. F., de Mello Prado, R., Lúcio, J. C. B., López-Díaz, I., Carrera, E. and Carvalho, R. F. (2021): Ammonium toxicity alleviation by silicon is dependent on cytokinins in tomato cv. Micro-Tom. Journal of Plant Growth Regulation. 1-12. https://doi.org/10.1007/s00344-021-10314-5
  6. Bat-Erdene, O., Szegő, A., Gyöngyik, M., Mirmazloum, I., Papp, I. (2021): Long term silicon exposure coordinately downregulates lipoxygenase genes, decreases reactive oxygen species level and promotes growth of cucumber plants in a semi-hydroponic cultivation system. Russian Journal of Plant Physiology.68(5).
  7. Bauer, P., Elbaum, R., Weiss, I. M. (2011): Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science: International Journal of Experimental Plant Biology. 180: 746–756. https://doi.org/10.1016/j.plantsci.2011.01.019
  8. Beckmann, M., Hock, M., Bruelheide, H., Erfmeier, A. (2012): The role of UV-B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environmental and Experimental Botany 75: 173–180. https://doi.org/10.1016/j.envexpbot.2011.09.010
  9. Bienert, G. P., Schüssler, M. D., Jahn, T. P. (2008): Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends in Biochemical Sciences. 33: 20–26. https://doi.org/10.1016/j.tibs.2007.10.004
  10. Bozkurt, T. O., Schornack, S., Banfield, M. J., Kamoun, S. (2012): Oomycetes, effectors, and all that jazz. Current Opinion in Plant Biology 15: 483–492. https://doi.org/10.1016/j.pbi.2012.03.008
  11. Chen, W., Yao, X., Cai, K., Chen, J. (2011): Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research. 142: 67–76. https://doi.org/10.1007/s12011-010-8742-x
  12. Chérif, M., Menzies, J. G., Benhamou, N., Bélanger, R. R. (1992): Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants. Physiological and Molecular Plant Pathology. 41: 371–385. https://doi.org/10.1016/0885-5765(92)90022-N
  13. Chiba, Y., Mitani, N., Yamaji, N., Ma, J. F. (2009): HvLsi1 is a silicon influx transporter in barley. The Plant Journal for Cell and Molecular Biology. 57: 810–818. https://doi.org/10.1111/j.1365-313X.2008.03728.x
  14. Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J., Bélanger, R. R. (2019): The controversies of silicon’s role in plant biology. New Phytologist. 221(1): 67–85. DOI: 10.1111/nph.15343
  15. Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P., Lima, G. P. P. (2009): Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science. 49(3): 949–954. https://doi.org/10.2135/cropsci2008. 04.0233
  16. Dallagnol, L. J., Rodrigues, F. A., Tanaka, F. A. O., Amorim, L., Camargo, L. E. A. (2012): Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology. 61(2): 323–330. https://doi.org/10.1111/j.1365-3059.2011.02518.x
  17. Datnoff, L. E., Snyder, G. H., Korndörfer, G. H. (2001): Silicon in Agriculture. Elsevier.
  18. Deshmukh, R., Bélanger, R.R. (2016): Molecular evolution of aquaporins and silicon influx in plants. Functional Ecology. 30: 1277–1285. https://doi.org/10.1111/1365-2435.12570
  19. Deshmukh, R. K., Vivancos, J., Guérin, V., Sonah, H., Labbé, C., Belzile, F., Bélanger, R. R. (2013): Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology. 83: 303–315. https://doi.org/10.1007/s11103-013-0087-3
  20. Epstein, E. (1999): Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 641–664. https://doi.org/10.1146/annurev.arplant.50.1.641
  21. Epstein, E. (1994): The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the U. S. A. 91: 11–17. https://doi.org/10.1073/pnas.91.1.11
  22. Etesami, H., Jeong, B. R. (2018): Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety. 147: 881–896. https://doi.org/10.1016/j.ecoenv.2017.09.063
  23. Exley, C. (2015): A possible mechanism of biological silicification in plants. Frontiers in Plant Science. 6. https://doi.org/10.3389/fpls.2015.00853
  24. Faiyue, B., Vijayalakshmi, C., Nawaz, S., Nagato, Y., Taketa, S., Ichii, M., Al-Azzawi, M. J., Flowers, T. J. (2010): Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). Plant Cell and Environment. 33: 687–701. https://doi.org/10.1111/j.1365-3040.2009.02077.x
  25. Farooq, M. A., Dietz, K. J. (2015): Silicon as Versatile Player in Plant and Human Biology: Overlooked and Poorly Understood. Frontiers in Plant Science. 6: 994.
  26. Fawe, A., Abou-Zaid, M., Menzies, J. G., Bélanger, R. R. (1998): Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology. 88: 396–401. https://doi.org/10.1094/PHYTO.1998.88.5.396
  27. Ferreira, R. S., Moraes, J. C., Antunes, C. S. (2011): Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. Neotropical entomology. 40(4): 495–500. https://doi.org/10.1590/S1519-566X2011000400014
  28. Flam-Shepherd, R., Huynh, W. Q., Coskun, D., Hamam, A. M., Britto, D. T., Kronzucker, H. J. (2018): Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Expimental Botany. 69: 1679–1692. https://doi.org/10.1093/jxb/erx460
  29. Fleck, A. T., Schulze, S., Hinrichs, M., Specht, A., Waßmann, F., Schreiber, L., Schenk, M. K. (2015): Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes. PloS One. 10: e0138555. https://doi.org/10.1371/journal.pone.0138555
  30. Ghanmi, D., McNally, D., Benhamou, N., Menzies, J., Belanger, R. (2004): Powdery mildew of Arabidopsis thaliana: A pathosystem for exploring the role of silicon in plant-microbe interactions. Physiological and Molecular Plant Pathology. 64: 189–199. https://doi.org/10.1016/j.pmpp. 2004.07.005
  31. Giraldo, M. C., Valent, B. (2013): Filamentous plant pathogen effectors in action. Nature Reviews Microbiology. 11: 800–814. https://doi.org/10.1038/nrmicro3119
  32. Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., Chaumont, F. (2009): Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta. 1788: 1213–1228. https://doi.org/10.1016/j.bbamem.2009.03.009
  33. Gong, H. J., Randall, D. P., Flowers, T. J. (2006): Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell and Environment. 29: 1970–1979. https://doi.org/10.1111/j.1365-3040.2006.01572.x
  34. Guerriero, G., Hausman, J. F., Legay, S. (2016): Silicon and the Plant Extracellular Matrix. Frontiers in Plant Science. 7: 463. https://doi.org/10.3389/fpls.2016.00463
  35. Gunes, A., Inal, A., Bagci, E. G., Pilbeam, D. J., (2007): Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil. 290(1): 103–114. https://doi.org/10.1007/s11104-006-9137-9
  36. Hamayun, M., Sohn, E. Y., Afzal Khan, S., Shinwari, Z., Khan, A., Lee, I. J. (2010): Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pakistan Journal of Botany. 42(3): 1713–1722.
  37. Hattori, T., Sonobe, K., Araki, H., Inanaga, S., An, P., Morita, S. (2008): Silicon Application by Sorghum Through the Alleviation of Stress-Induced Increase in Hydraulic Resistance. Journal of Plant Nutrition. 31: 1482–1495. https://doi.org/10.1080/01904160802208477
  38. Hodson, M. J., White, P. J., Mead, A. and Broadley, M. R. (2005): Phylogenetic variation in the silicon composition of plants. Annals of botany. 96(6): 1027-1046. https://doi.org/ 10.1093/aob/mci255
  39. Hogenhout, S. A., Bos, J. I. B. (2011): Effector proteins that modulate plant--insect interactions. Current Opinion in Plant Biology. 14: 422–428. https://doi.org/10.1016/j.pbi. 2011.05.003
  40. Holub, E. B., Cooper, A. (2004): Matrix, reinvention in plants: how genetics is unveiling secrets of non-host disease resistance. Trends in Plant Science. 9: 211–214. https://doi.org/10.1016/j.tplants.2004.03.002
  41. Horiguchi, T. (1988): Mechanism of manganese toxicity and tolerance of plants. Soil Science and Plant Nutrition. 34: 65–73. https://doi.org/10.1080/00380768.1988.10415580
  42. Hu, J., Li, Y., Jeong, B. (2020): Silicon Alleviates Temperature Stresses in Poinsettia by Regulating Stomata, Photosynthesis, and Oxidative Damages. Agronomy. 10. https://doi.org/10.3390/agronomy10091419
  43. Iwasaki, K., Maier, P., Fecht, M., Horst, W. (2002): Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology. 159: 167–173. https://doi.org/10.1078/0176-1617-00691
  44. Jaleel, C.A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S., Panneerselvam, R. (2009): Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum. 31: 427–436. https://doi.org/10.1007/s11738-009-0275-6
  45. Jarvis, S. C. (1987): The effects of low, regulated supplies of nitrate and ammonium nitrogen on the growth and composition of perennial ryegrass, in: Van Diest, A. (Ed.), Plant and Soil Interfaces and Interactions: Proceedings of the International Symposium: Plant and Soil: Interfaces and Interactions. Wageningen, The Netherlands August 6–8, 1986, Developments in Plant and Soil Sciences. Springer Netherlands, Dordrecht, pp. 99–112. https://doi.org/10.1007/978-94-009-3627-0_7
  46. Keller, C., Rizwan, M., Davidian, J.-C., Pokrovsky, O.S., Bovet, N., Chaurand, P., Meunier, J. D. (2015): Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta. 241; 847–860.
  47. Khalid, R. A., Silva, J. A. (1980): Residual effect of calcium silicate on Ph, phosphorus, and aluminum in a tropical soil profile. Soil Science and Plant Nutrition. 26: 87–98. https://doi.org/10.1080/00380768.1980.10433215
  48. Khoshgoftarmanesh, A. H., Khodarahmi, S., Haghighi, M. (2014): Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Archives of Agronomy and Soil Science. 60: 639–653. https://doi.org/10.1080/03650340.2013.822487
  49. Kim, Y. H., Khan, A., Waqas, M., Shim, J. K., Kim, D., Lee, K. Y., Lee, I. (2013): Silicon Application to Rice Root Zone Influenced the Phytohormonal and Antioxidant Responses Under Salinity Stress. Journal of Plant Growth Regulation. 33. https://doi.org/10.1007/s00344-013-9356-2
  50. Kleiber, T., Calomme, M. and Borowiak, K. (2015): The effect of choline-stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiology and Biochemistry. 96: 180-188. https://doi.org/10.1016/j.plaphy. 2015.07.033
  51. Lee, S., Sohn, E., Hamayun, M., Yoon, J., Lee, I. (2010): Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems. 80: 333–340. https://doi.org/10.1007/s10457-010-9299-6
  52. Li, B., Wei, A., Song, C., Li, N., Zhang, J. (2008): Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal. 6: 146–159. https://doi.org/10.1111/j.1467-7652.2007.00301.x
  53. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R. (2003): Exogenous Silicon (Si) Increases Antioxidant Enzyme Activity and Reduces Lipid Peroxidation in Roots of Salt-Stressed Barley (Hordeum vulgare L.). Journal of Plant Physiology. 160: 1157–64. https://doi.org/10.1078/0176-1617-01065
  54. Liang, Y., Hua, H., Zhang, J., Cheng, C., Römheld, V. (2006): Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist. 172: 63–72. https://doi.org/10.1111/j.1469-8137.2006.01797.x
  55. Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A. (2015): Silicon in Agriculture: From Theory to Practice. Springer Netherlands. https://doi.org/10.1007/978-94-017-9978-2
  56. Liang, Y., Si, J., Römheld, V. (2005): Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist. 167: 797–804. https://doi.org/10.1111/j.1469-8137.2005.01463.x
  57. Liang, Y., Sun, W., Christie, P. (2007): Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution (Barking, Essex: 1987). 147: 422–8. https://doi.org/10.1016/j.envpol.2006.06.008
  58. Liu, B., Davies, K., Hall, A. (2020): Silicon builds resilience in strawberry plants against both strawberry powdery mildew Podosphaera aphanis and two-spotted spider mites Tetranychus urticae. PLOS ONE 15(12). e0241151. https://doi.org/10.1371/journal.pone.0241151
  59. Liu, Y. X., Xu, X. Z. (2007): Effects of Silicon on Polyamine Types and Forms in Leaf of Zizyphus jujube cv. Jinsi-xiaozao Under Salt Stress. Journal of Nanjing Forestry University (Natural Sciences Edition), 4.
  60. Lumsdon, D.G., Farmer, V.C. (1995): Solubility characteristics of proto-imogolite sols: how silicic acid can de-toxify aluminium solutions. European Journal of Soil Science. 46: 179–186. https://doi.org/10.1111/j.1365-2389.1995. tb01825.x
  61. Ma, J. F. (2004): Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition. 50: 11–18. https://doi.org/10.1080/00380768.2004. 10408447
  62. Ma, J. F., Goto, S., Tamai, K., Ichii, M. (2001): Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice. Plant Physiology. 127: 1773–1780. https://doi.org/10.1104/pp. 010271
  63. Ma, J. F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., Yano, M. (2004): Characterization of the Silicon Uptake System and Molecular Mapping of the Silicon Transporter Gene in Rice. Plant Physiology. 136: 3284–3289. https://doi.org/10.1104/pp.104.047365
  64. Ma, J. F., Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam; Boston.
  65. Ma, J. F., Yamaji, N. (2006): Silicon uptake and accumulation in higher plants. Trends in Plant Science. 11; 392–397. https://doi.org/10.1016/j.tplants.2006.06.007
  66. Ma, J. F., Yamaji, N. (2015): A cooperative system of silicon transport in plants. Trends in Plant Science. 20(7): 435-442. https://doi.org/10.1016/j.tplants.2015.04.007
  67. Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., Yano, M. (2007): An efflux transporter of silicon in rice. Nature. 448: 209–212. https://doi.org/10.1038/nature05964
  68. Ma, J. F., Yamaji, N., Mitani-Ueno, N. (2011): Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences. 87: 377–385. https://doi.org/10.2183/pjab.87.377
  69. Maksimović, J. D., Bogdanović, J., Maksimović, V., Nikolic, M. (2007): Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. Journal of Plant Nutrition and Soil Science. 170(6): 739–744.
  70. Markovich, O., Steiner, E., Kouřil, Š., Tarkowski, P., Aharoni, A. and Elbaum, R. (2017): Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant, Cell & Environment, 40(7): 1189-1196. https://doi.org/10.1111/pce.12913
  71. Marron, A. O., Ratcliffe, S., Wheeler, G. L., Goldstein, R. E., King, N., Not, F., de Vargas, C., Richter, D. J. (2016): The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution. 33: 3226–3248. https://doi.org/10.1093/molbev/msw209
  72. Matichenkov, V. V., Ammosova, Y. M. and Bocharnikova, E. A. (1997): The method for determination of plant available silica in soil. Agrochemistry. 1: 76-84.
  73. Matichenkov, V. V. (1990): Amorphous oxide of silicon in soddy podzolic soil and its influence on plants. Canadian Dissertation. 26. Moscow State University, Moscow.
  74. Matychenkov, V. V., Pinskiy, D. L., Bocharnikova, Y. A. (1995): Influence of mechanical compaction of soils on the state and form of available silicon. Eurasian soil science. 27(12): 58–67.
  75. Mditshwa, A., Bower, J. P., Bertling, I., Mathaba, N. (2013): Investigation of the efficiency of the total antioxidants assays in Silicon-treated lemon fruit (Citrus limon). In II All Africa Horticulture Congress. 1007: 93–102. https://doi.org/10.17660/ActaHortic.2013.1007.7
  76. Ming, D. F., Pei, Z. F., Naeem, M. S., Gong, H. J., Zhou, W. J. (2012): Silicon Alleviates PEG-Induced Water-Deficit Stress in Upland Rice Seedlings by Enhancing Osmotic Adjustment. Journal of Agronomy and Crop Science. 198: 14–26. https://doi.org/10.1111/j.1439-037X.2011.00486.x
  77. Mitani, N., Ma, J. F. (2005): Uptake system of silicon in different plant species. Journal of Experimental Botany. 56: 1255–1261. https://doi.org/10.1093/jxb/eri121
  78. Mitani, N., Yamaji, N., Ago, Y., Iwasaki, K., Ma, J. F. (2011): Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant Journal of Cell Molecular Biology. 66: 231–240. https://doi.org/10.1111/j.1365-313X.2011. 04483.x
  79. Mitra, G. N. (2015): Silicon (Si) Uptake, in: Mitra, G.N. (Ed.), Regulation of Nutrient Uptake by Plants: A Biochemical and Molecular Approach. Springer India, New Delhi, pp. 181–187. https://doi.org/10.1007/978-81-322-2334-4_19
  80. Moussa, H. (2006): Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agricultural Biology. 8530: 8–2.
  81. Nikolic, M., Nikolic, N., Liang, Y., Kirkby, E.A., Römheld, V. (2007): Germanium-68 as an Adequate Tracer for Silicon Transport in Plants. Characterization of Silicon Uptake in Different Crop Species. Plant Physiology. 143: 495–503. https://doi.org/10.1104/pp.106.090845
  82. Nürnberger, T., Lipka, V. (2005): Non-host resistance in plants: new insights into an old phenomenon. Molecular Plant Pathology. 6: 335–345. https://doi.org/10.1111/j.1364-3703.2005.00279.x
  83. Orlov, D. S. (1985): Humus acids of soils. Published for the United States Dept. of Agriculture and the National Science Foundation, Washington, D.C., by Amerind Pub. Co, New Delhi.
  84. Ramírez-Godoy, A., Puentes-Pérez, G., Restrepo-Díaz, H. (2018): An evaluation of the use of calcium, potassium and silicon for the management of Diaphorina citri populations in Tahiti lime trees. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 46(2): 546–552. https://doi.org/10.15835/ nbha46211152
  85. Rasoolizadeh, A., Labbé, C., Sonah, H., Deshmukh, R., Belzile, F., Menzies, J., Belanger, R. (2018): Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biology. 18. https://doi.org/10.1186/s12870-018-1312-7
  86. Raven, J. A. (2001): Chapter 3 Silicon transport at the cell and tissue level, in: Silicon in Agriculture. pp. 41–55. https://doi.org/10.1016/S0928-3420(01)80007-0
  87. Rogalla, H., Römheld, V. (2002): Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell and Environment. 25: 549–555. https://doi.org/10.1046/j.1365-3040.2002.00835.x
  88. Rybus-Zając, M., Kubiś, J. (2010): Effect of UV-B Radiation on Antioxidative Enzyme Activity in Cucumber Cotyledons. Acta Biologica Cracoviensia s. Botanica. 52. https://doi.org/10.2478/v10182-010-0030-8
  89. Samuels, A., Glass, A., Ehret, D., Menzies, J. (1991): Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Canadian Journal of Botany. 69: 140–146. https://doi.org/10.1139/b91-020
  90. Savvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M., Patakioutas, G. (2009): Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and experimental botany. 65(1): 11–17. https://doi.org/10.1016/j.envexpbot.2008.07.004
  91. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., Li, J. (2010): Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology. 167: 1248–1252. https://doi.org/10.1016/j.jplph.2010.04.011
  92. Shi, Q., Bao, Z., Zhu, Z., He, Y., Qian, Q., Yu, J. (2005): Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry. 66: 1551–1559. https://doi.org/10.1016/j.phytochem.2005.05.006
  93. Soylemezoglu, G., Demir, K., Inal, A., Gunes, A. (2009): Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia horticulturae. 123(2): 240–246. https://doi.org/10.1016/j.scienta.2009.09.005
  94. Sun, H., Duan, Y., Qi, X., Zhang, L., Huo, H., Gong, H. (2018). Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Annals of Botany. 122: 641–648. https://doi.org/10.1093/aob/mcy103
  95. Sun, H., Guo, J., Duan, Y., Zhang, T., Huo, H., Gong, H. (2017): Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus. Physiologia Plantarum. 159: 201–214. https://doi.org/10.1111/ppl.12515
  96. Takahashi, E., Ma, J. F., Miyake, Y. (1990): The possibility of silicon as an essential element for higher plants. Comments on Agricultural Food Chemistry. 2: 99–102.
  97. Torabi, F., Majd, A., Enteshari, S. (2015): The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Science and Plant Nutrition. 61: 788–798. https://doi.org/10.1080/00380768.2015.1005540
  98. Toresano-Sánchez, F., Valverde-García, A., Camacho-Ferre, F. (2012): Effect of the Application of Silicon Hydroxide on Yield and Quality of Cherry Tomato. Journal of plant nutrition. 35(4): 567–590. https://doi.org/10.1080/01904167.2012.644375
  99. Vercelli, M., Minuto, A., Minuto, G., Contartese, V., Devecchi, M., Larcher, F. (2017): The effects of innovative silicon applications on growth and powdery mildew control in soilless-grown cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.). Acta Physiologiae Plantarum. 39(6): 129. https://doi.org/10.1007/s11738-017-2426-5
  100. Wagner, F. (1940): The importance of silicic acid for the growth of some cultivated plants, their metabolism, and their susceptibility to true mildews. Phytopathologische Zeitschrift.12(5).
  101. Wang, H. S., Yu, C., Fan, P. P., Bao, B. F., Li, T., Zhu, Z. J. (2014): Identification of Two Cucumber Putative Silicon Transporter Genes in Cucumis sativus. Journal of Plant Growth Regulation. 34. https://doi.org/10.1007/s00344-014-9466-5
  102. Wang, S., Liu, P., Chen, D., Yin, L., Li, H., Deng, X. (2015): Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontiers in Plant Science. 6. https://doi.org/10.3389/fpls.2015.00759
  103. Wang, Y., Wang, Y. (2018): Phytophthora sojae effectors orchestrate warfare with host immunity. Current Opinion in Microbiology, 46:7–13. https://doi.org/10.1016/j.mib.2018. 01.008
  104. Ye, J., Yan, C., Liu, J., Lu, H., Liu, T., Song, Z. (2012): Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong. Environmental Pollution. 162: 369–373. https://doi.org/10.1016/j.envpol.2011.12.002
  105. Yin, L., Shiwen, W., Li, J., Tanaka, K., Oka, M. (2013): Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum. 35. https://doi.org/10.1007/s11738-013-1343-5
  106. Zhang, C., Wang, L., Zhang, W., Zhang, F. (2013): Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis? Plant and Soil. 372. https://doi.org/10.1007/s11104-013-1723-z
  107. Zhu, Y., Gong, H. (2014): Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development. 34, 455–472. https://doi.org/10.1007/s13593-013-0194-1
  108. Zuccarini, P. (2008): Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum. 521(1): 157–160. https://doi.org/10.1007/s10535-008-0034-3