Effects of silicon in plants with particular reference to horticultural crops - Review article

July 21, 2021

Copyright (c) 2021 International Journal of Horticultural Science

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

How To Cite
Selected Style: APA
Bat-Erdene, O., Szegő, A., Gyöngyik, M., Mirmazloum, I., & Papp, I. (2021). Effects of silicon in plants with particular reference to horticultural crops - Review article. International Journal of Horticultural Science, 27, 95-105.

Silicon (Si) has long been considered as non-essential element for plant’s growth and production. Numerous efforts are being made for the discovery of its beneficial effects with large scale studies laying foundation for new findings and hypotheses. Therefore, Si has been suggested to be a quasi-essential element due to its positive effects against biotic and abiotic stresses alike. Though Si is the second most abundant element in the soil profile, its availability to plants is limited to the form of monosilicic acid only. Besides, plants’ ability to take-up Si and use it in their physiological processes also depends on the available transporters associated with it. Thus, the present review covers uptake and transport of silicon in plants as well as Si mediated physiological processes, including mechanisms underlying induced tolerance against biotic and abiotic stresses with a particular emphasis on horticultural species.

  1. Adrees, M., Ali, S., Rizwan, M., Zia-Ur-Rehman, M., Ibrahim, M., Abbas, F., Farid, M., Qayyum, M. F., Irshad, M. K. (2015): Mechanisms of silicon-mediated alleviation of heavy metal toxicity in plants: A review. Ecotoxicology Environmental Safety 119: 186–197. ecoenv.2015.05.011
  2. Ahmed, M., Qadeer, U., Aslam, M. (2011): Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research. 6: 594–607.
  3. Bakhat, H. F., Hanstein, S., Schubert, S. (2009): Optimal level of silicon for maize (Zea mays L. c.v. AMADEO) growth in nutrient solution under controlled conditions.
  4. Barber, D. A., Shone, M. G. T. (1967): The Initial Uptake of Ions by Barley Roots: III. The uptake of cations. Journal of Experimental Botany. 18: 631–643.
  5. Barreto, R. F., de Mello Prado, R., Lúcio, J. C. B., López-Díaz, I., Carrera, E. and Carvalho, R. F. (2021): Ammonium toxicity alleviation by silicon is dependent on cytokinins in tomato cv. Micro-Tom. Journal of Plant Growth Regulation. 1-12.
  6. Bat-Erdene, O., Szegő, A., Gyöngyik, M., Mirmazloum, I., Papp, I. (2021): Long term silicon exposure coordinately downregulates lipoxygenase genes, decreases reactive oxygen species level and promotes growth of cucumber plants in a semi-hydroponic cultivation system. Russian Journal of Plant Physiology.68(5).
  7. Bauer, P., Elbaum, R., Weiss, I. M. (2011): Calcium and silicon mineralization in land plants: transport, structure and function. Plant Science: International Journal of Experimental Plant Biology. 180: 746–756.
  8. Beckmann, M., Hock, M., Bruelheide, H., Erfmeier, A. (2012): The role of UV-B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environmental and Experimental Botany 75: 173–180.
  9. Bienert, G. P., Schüssler, M. D., Jahn, T. P. (2008): Metalloids: essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends in Biochemical Sciences. 33: 20–26.
  10. Bozkurt, T. O., Schornack, S., Banfield, M. J., Kamoun, S. (2012): Oomycetes, effectors, and all that jazz. Current Opinion in Plant Biology 15: 483–492.
  11. Chen, W., Yao, X., Cai, K., Chen, J. (2011): Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research. 142: 67–76.
  12. Chérif, M., Menzies, J. G., Benhamou, N., Bélanger, R. R. (1992): Studies of silicon distribution in wounded and Pythium ultimum infected cucumber plants. Physiological and Molecular Plant Pathology. 41: 371–385.
  13. Chiba, Y., Mitani, N., Yamaji, N., Ma, J. F. (2009): HvLsi1 is a silicon influx transporter in barley. The Plant Journal for Cell and Molecular Biology. 57: 810–818.
  14. Coskun, D., Deshmukh, R., Sonah, H., Menzies, J. G., Reynolds, O., Ma, J. F., Kronzucker, H. J., Bélanger, R. R. (2019): The controversies of silicon’s role in plant biology. New Phytologist. 221(1): 67–85. DOI: 10.1111/nph.15343
  15. Crusciol, C. A. C., Pulz, A. L., Lemos, L. B., Soratto, R. P., Lima, G. P. P. (2009): Effects of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Science. 49(3): 949–954. 04.0233
  16. Dallagnol, L. J., Rodrigues, F. A., Tanaka, F. A. O., Amorim, L., Camargo, L. E. A. (2012): Effect of potassium silicate on epidemic components of powdery mildew on melon. Plant Pathology. 61(2): 323–330.
  17. Datnoff, L. E., Snyder, G. H., Korndörfer, G. H. (2001): Silicon in Agriculture. Elsevier.
  18. Deshmukh, R., Bélanger, R.R. (2016): Molecular evolution of aquaporins and silicon influx in plants. Functional Ecology. 30: 1277–1285.
  19. Deshmukh, R. K., Vivancos, J., Guérin, V., Sonah, H., Labbé, C., Belzile, F., Bélanger, R. R. (2013): Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology. 83: 303–315.
  20. Epstein, E. (1999): Silicon. Annual Review of Plant Physiology and Plant Molecular Biology. 50: 641–664.
  21. Epstein, E. (1994): The anomaly of silicon in plant biology. Proceedings of the National Academy of Sciences of the U. S. A. 91: 11–17.
  22. Etesami, H., Jeong, B. R. (2018): Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety. 147: 881–896.
  23. Exley, C. (2015): A possible mechanism of biological silicification in plants. Frontiers in Plant Science. 6.
  24. Faiyue, B., Vijayalakshmi, C., Nawaz, S., Nagato, Y., Taketa, S., Ichii, M., Al-Azzawi, M. J., Flowers, T. J. (2010): Studies on sodium bypass flow in lateral rootless mutants lrt1 and lrt2, and crown rootless mutant crl1 of rice (Oryza sativa L.). Plant Cell and Environment. 33: 687–701.
  25. Farooq, M. A., Dietz, K. J. (2015): Silicon as Versatile Player in Plant and Human Biology: Overlooked and Poorly Understood. Frontiers in Plant Science. 6: 994.
  26. Fawe, A., Abou-Zaid, M., Menzies, J. G., Bélanger, R. R. (1998): Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathology. 88: 396–401.
  27. Ferreira, R. S., Moraes, J. C., Antunes, C. S. (2011): Silicon influence on resistance induction against Bemisia tabaci biotype B (Genn.) (Hemiptera: Aleyrodidae) and on vegetative development in two soybean cultivars. Neotropical entomology. 40(4): 495–500.
  28. Flam-Shepherd, R., Huynh, W. Q., Coskun, D., Hamam, A. M., Britto, D. T., Kronzucker, H. J. (2018): Membrane fluxes, bypass flows, and sodium stress in rice: the influence of silicon. Journal of Expimental Botany. 69: 1679–1692.
  29. Fleck, A. T., Schulze, S., Hinrichs, M., Specht, A., Waßmann, F., Schreiber, L., Schenk, M. K. (2015): Silicon Promotes Exodermal Casparian Band Formation in Si-Accumulating and Si-Excluding Species by Forming Phenol Complexes. PloS One. 10: e0138555.
  30. Ghanmi, D., McNally, D., Benhamou, N., Menzies, J., Belanger, R. (2004): Powdery mildew of Arabidopsis thaliana: A pathosystem for exploring the role of silicon in plant-microbe interactions. Physiological and Molecular Plant Pathology. 64: 189–199. 2004.07.005
  31. Giraldo, M. C., Valent, B. (2013): Filamentous plant pathogen effectors in action. Nature Reviews Microbiology. 11: 800–814.
  32. Gomes, D., Agasse, A., Thiébaud, P., Delrot, S., Gerós, H., Chaumont, F. (2009): Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta. 1788: 1213–1228.
  33. Gong, H. J., Randall, D. P., Flowers, T. J. (2006): Silicon deposition in the root reduces sodium uptake in rice (Oryza sativa L.) seedlings by reducing bypass flow. Plant Cell and Environment. 29: 1970–1979.
  34. Guerriero, G., Hausman, J. F., Legay, S. (2016): Silicon and the Plant Extracellular Matrix. Frontiers in Plant Science. 7: 463.
  35. Gunes, A., Inal, A., Bagci, E. G., Pilbeam, D. J., (2007): Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil. 290(1): 103–114.
  36. Hamayun, M., Sohn, E. Y., Afzal Khan, S., Shinwari, Z., Khan, A., Lee, I. J. (2010): Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pakistan Journal of Botany. 42(3): 1713–1722.
  37. Hattori, T., Sonobe, K., Araki, H., Inanaga, S., An, P., Morita, S. (2008): Silicon Application by Sorghum Through the Alleviation of Stress-Induced Increase in Hydraulic Resistance. Journal of Plant Nutrition. 31: 1482–1495.
  38. Hodson, M. J., White, P. J., Mead, A. and Broadley, M. R. (2005): Phylogenetic variation in the silicon composition of plants. Annals of botany. 96(6): 1027-1046. 10.1093/aob/mci255
  39. Hogenhout, S. A., Bos, J. I. B. (2011): Effector proteins that modulate plant--insect interactions. Current Opinion in Plant Biology. 14: 422–428. 2011.05.003
  40. Holub, E. B., Cooper, A. (2004): Matrix, reinvention in plants: how genetics is unveiling secrets of non-host disease resistance. Trends in Plant Science. 9: 211–214.
  41. Horiguchi, T. (1988): Mechanism of manganese toxicity and tolerance of plants. Soil Science and Plant Nutrition. 34: 65–73.
  42. Hu, J., Li, Y., Jeong, B. (2020): Silicon Alleviates Temperature Stresses in Poinsettia by Regulating Stomata, Photosynthesis, and Oxidative Damages. Agronomy. 10.
  43. Iwasaki, K., Maier, P., Fecht, M., Horst, W. (2002): Leaf apoplastic silicon enhances manganese tolerance of cowpea (Vigna unguiculata). Journal of Plant Physiology. 159: 167–173.
  44. Jaleel, C.A., Riadh, K., Gopi, R., Manivannan, P., Inès, J., Al-Juburi, H.J., Chang-Xing, Z., Hong-Bo, S., Panneerselvam, R. (2009): Antioxidant defense responses: physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum. 31: 427–436.
  45. Jarvis, S. C. (1987): The effects of low, regulated supplies of nitrate and ammonium nitrogen on the growth and composition of perennial ryegrass, in: Van Diest, A. (Ed.), Plant and Soil Interfaces and Interactions: Proceedings of the International Symposium: Plant and Soil: Interfaces and Interactions. Wageningen, The Netherlands August 6–8, 1986, Developments in Plant and Soil Sciences. Springer Netherlands, Dordrecht, pp. 99–112.
  46. Keller, C., Rizwan, M., Davidian, J.-C., Pokrovsky, O.S., Bovet, N., Chaurand, P., Meunier, J. D. (2015): Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta. 241; 847–860.
  47. Khalid, R. A., Silva, J. A. (1980): Residual effect of calcium silicate on Ph, phosphorus, and aluminum in a tropical soil profile. Soil Science and Plant Nutrition. 26: 87–98.
  48. Khoshgoftarmanesh, A. H., Khodarahmi, S., Haghighi, M. (2014): Effect of silicon nutrition on lipid peroxidation and antioxidant response of cucumber plants exposed to salinity stress. Archives of Agronomy and Soil Science. 60: 639–653.
  49. Kim, Y. H., Khan, A., Waqas, M., Shim, J. K., Kim, D., Lee, K. Y., Lee, I. (2013): Silicon Application to Rice Root Zone Influenced the Phytohormonal and Antioxidant Responses Under Salinity Stress. Journal of Plant Growth Regulation. 33.
  50. Kleiber, T., Calomme, M. and Borowiak, K. (2015): The effect of choline-stabilized orthosilicic acid on microelements and silicon concentration, photosynthesis activity and yield of tomato grown under Mn stress. Plant Physiology and Biochemistry. 96: 180-188. 2015.07.033
  51. Lee, S., Sohn, E., Hamayun, M., Yoon, J., Lee, I. (2010): Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforestry Systems. 80: 333–340.
  52. Li, B., Wei, A., Song, C., Li, N., Zhang, J. (2008): Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal. 6: 146–159.
  53. Liang, Y., Chen, Q., Liu, Q., Zhang, W., Ding, R. (2003): Exogenous Silicon (Si) Increases Antioxidant Enzyme Activity and Reduces Lipid Peroxidation in Roots of Salt-Stressed Barley (Hordeum vulgare L.). Journal of Plant Physiology. 160: 1157–64.
  54. Liang, Y., Hua, H., Zhang, J., Cheng, C., Römheld, V. (2006): Importance of plant species and external silicon concentration to active silicon uptake and transport. New Phytologist. 172: 63–72.
  55. Liang, Y., Nikolic, M., Bélanger, R., Gong, H., Song, A. (2015): Silicon in Agriculture: From Theory to Practice. Springer Netherlands.
  56. Liang, Y., Si, J., Römheld, V. (2005): Silicon uptake and transport is an active process in Cucumis sativus. New Phytologist. 167: 797–804.
  57. Liang, Y., Sun, W., Christie, P. (2007): Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution (Barking, Essex: 1987). 147: 422–8.
  58. Liu, B., Davies, K., Hall, A. (2020): Silicon builds resilience in strawberry plants against both strawberry powdery mildew Podosphaera aphanis and two-spotted spider mites Tetranychus urticae. PLOS ONE 15(12). e0241151.
  59. Liu, Y. X., Xu, X. Z. (2007): Effects of Silicon on Polyamine Types and Forms in Leaf of Zizyphus jujube cv. Jinsi-xiaozao Under Salt Stress. Journal of Nanjing Forestry University (Natural Sciences Edition), 4.
  60. Lumsdon, D.G., Farmer, V.C. (1995): Solubility characteristics of proto-imogolite sols: how silicic acid can de-toxify aluminium solutions. European Journal of Soil Science. 46: 179–186. tb01825.x
  61. Ma, J. F. (2004): Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Science and Plant Nutrition. 50: 11–18. 10408447
  62. Ma, J. F., Goto, S., Tamai, K., Ichii, M. (2001): Role of Root Hairs and Lateral Roots in Silicon Uptake by Rice. Plant Physiology. 127: 1773–1780. 010271
  63. Ma, J. F., Mitani, N., Nagao, S., Konishi, S., Tamai, K., Iwashita, T., Yano, M. (2004): Characterization of the Silicon Uptake System and Molecular Mapping of the Silicon Transporter Gene in Rice. Plant Physiology. 136: 3284–3289.
  64. Ma, J. F., Takahashi, E. (2002). Soil, fertilizer, and plant silicon research in Japan. Elsevier, Amsterdam; Boston.
  65. Ma, J. F., Yamaji, N. (2006): Silicon uptake and accumulation in higher plants. Trends in Plant Science. 11; 392–397.
  66. Ma, J. F., Yamaji, N. (2015): A cooperative system of silicon transport in plants. Trends in Plant Science. 20(7): 435-442.
  67. Ma, J.F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T., Katsuhara, M., Yano, M. (2007): An efflux transporter of silicon in rice. Nature. 448: 209–212.
  68. Ma, J. F., Yamaji, N., Mitani-Ueno, N. (2011): Transport of silicon from roots to panicles in plants. Proceedings of the Japan Academy, Series B, Physical and Biological Sciences. 87: 377–385.
  69. Maksimović, J. D., Bogdanović, J., Maksimović, V., Nikolic, M. (2007): Silicon modulates the metabolism and utilization of phenolic compounds in cucumber (Cucumis sativus L.) grown at excess manganese. Journal of Plant Nutrition and Soil Science. 170(6): 739–744.
  70. Markovich, O., Steiner, E., Kouřil, Š., Tarkowski, P., Aharoni, A. and Elbaum, R. (2017): Silicon promotes cytokinin biosynthesis and delays senescence in Arabidopsis and Sorghum. Plant, Cell & Environment, 40(7): 1189-1196.
  71. Marron, A. O., Ratcliffe, S., Wheeler, G. L., Goldstein, R. E., King, N., Not, F., de Vargas, C., Richter, D. J. (2016): The Evolution of Silicon Transport in Eukaryotes. Molecular Biology and Evolution. 33: 3226–3248.
  72. Matichenkov, V. V., Ammosova, Y. M. and Bocharnikova, E. A. (1997): The method for determination of plant available silica in soil. Agrochemistry. 1: 76-84.
  73. Matichenkov, V. V. (1990): Amorphous oxide of silicon in soddy podzolic soil and its influence on plants. Canadian Dissertation. 26. Moscow State University, Moscow.
  74. Matychenkov, V. V., Pinskiy, D. L., Bocharnikova, Y. A. (1995): Influence of mechanical compaction of soils on the state and form of available silicon. Eurasian soil science. 27(12): 58–67.
  75. Mditshwa, A., Bower, J. P., Bertling, I., Mathaba, N. (2013): Investigation of the efficiency of the total antioxidants assays in Silicon-treated lemon fruit (Citrus limon). In II All Africa Horticulture Congress. 1007: 93–102.
  76. Ming, D. F., Pei, Z. F., Naeem, M. S., Gong, H. J., Zhou, W. J. (2012): Silicon Alleviates PEG-Induced Water-Deficit Stress in Upland Rice Seedlings by Enhancing Osmotic Adjustment. Journal of Agronomy and Crop Science. 198: 14–26.
  77. Mitani, N., Ma, J. F. (2005): Uptake system of silicon in different plant species. Journal of Experimental Botany. 56: 1255–1261.
  78. Mitani, N., Yamaji, N., Ago, Y., Iwasaki, K., Ma, J. F. (2011): Isolation and functional characterization of an influx silicon transporter in two pumpkin cultivars contrasting in silicon accumulation. Plant Journal of Cell Molecular Biology. 66: 231–240. 04483.x
  79. Mitra, G. N. (2015): Silicon (Si) Uptake, in: Mitra, G.N. (Ed.), Regulation of Nutrient Uptake by Plants: A Biochemical and Molecular Approach. Springer India, New Delhi, pp. 181–187.
  80. Moussa, H. (2006): Influence of exogenous application of silicon on physiological response of salt-stressed maize (Zea mays L.). International Journal of Agricultural Biology. 8530: 8–2.
  81. Nikolic, M., Nikolic, N., Liang, Y., Kirkby, E.A., Römheld, V. (2007): Germanium-68 as an Adequate Tracer for Silicon Transport in Plants. Characterization of Silicon Uptake in Different Crop Species. Plant Physiology. 143: 495–503.
  82. Nürnberger, T., Lipka, V. (2005): Non-host resistance in plants: new insights into an old phenomenon. Molecular Plant Pathology. 6: 335–345.
  83. Orlov, D. S. (1985): Humus acids of soils. Published for the United States Dept. of Agriculture and the National Science Foundation, Washington, D.C., by Amerind Pub. Co, New Delhi.
  84. Ramírez-Godoy, A., Puentes-Pérez, G., Restrepo-Díaz, H. (2018): An evaluation of the use of calcium, potassium and silicon for the management of Diaphorina citri populations in Tahiti lime trees. Notulae Botanicae Horti Agrobotanici Cluj-Napoca. 46(2): 546–552. nbha46211152
  85. Rasoolizadeh, A., Labbé, C., Sonah, H., Deshmukh, R., Belzile, F., Menzies, J., Belanger, R. (2018): Silicon protects soybean plants against Phytophthora sojae by interfering with effector-receptor expression. BMC Plant Biology. 18.
  86. Raven, J. A. (2001): Chapter 3 Silicon transport at the cell and tissue level, in: Silicon in Agriculture. pp. 41–55.
  87. Rogalla, H., Römheld, V. (2002): Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell and Environment. 25: 549–555.
  88. Rybus-Zając, M., Kubiś, J. (2010): Effect of UV-B Radiation on Antioxidative Enzyme Activity in Cucumber Cotyledons. Acta Biologica Cracoviensia s. Botanica. 52.
  89. Samuels, A., Glass, A., Ehret, D., Menzies, J. (1991): Distribution of silicon in cucumber leaves during infection by powdery mildew fungus (Sphaerotheca fuliginea). Canadian Journal of Botany. 69: 140–146.
  90. Savvas, D., Giotis, D., Chatzieustratiou, E., Bakea, M., Patakioutas, G. (2009): Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and experimental botany. 65(1): 11–17.
  91. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., Li, J. (2010): Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology. 167: 1248–1252.
  92. Shi, Q., Bao, Z., Zhu, Z., He, Y., Qian, Q., Yu, J. (2005): Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry. 66: 1551–1559.
  93. Soylemezoglu, G., Demir, K., Inal, A., Gunes, A. (2009): Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia horticulturae. 123(2): 240–246.
  94. Sun, H., Duan, Y., Qi, X., Zhang, L., Huo, H., Gong, H. (2018). Isolation and functional characterization of CsLsi2, a cucumber silicon efflux transporter gene. Annals of Botany. 122: 641–648.
  95. Sun, H., Guo, J., Duan, Y., Zhang, T., Huo, H., Gong, H. (2017): Isolation and functional characterization of CsLsi1, a silicon transporter gene in Cucumis sativus. Physiologia Plantarum. 159: 201–214.
  96. Takahashi, E., Ma, J. F., Miyake, Y. (1990): The possibility of silicon as an essential element for higher plants. Comments on Agricultural Food Chemistry. 2: 99–102.
  97. Torabi, F., Majd, A., Enteshari, S. (2015): The effect of silicon on alleviation of salt stress in borage (Borago officinalis L.). Soil Science and Plant Nutrition. 61: 788–798.
  98. Toresano-Sánchez, F., Valverde-García, A., Camacho-Ferre, F. (2012): Effect of the Application of Silicon Hydroxide on Yield and Quality of Cherry Tomato. Journal of plant nutrition. 35(4): 567–590.
  99. Vercelli, M., Minuto, A., Minuto, G., Contartese, V., Devecchi, M., Larcher, F. (2017): The effects of innovative silicon applications on growth and powdery mildew control in soilless-grown cucumber (Cucumis sativus L.) and zucchini (Cucurbita pepo L.). Acta Physiologiae Plantarum. 39(6): 129.
  100. Wagner, F. (1940): The importance of silicic acid for the growth of some cultivated plants, their metabolism, and their susceptibility to true mildews. Phytopathologische Zeitschrift.12(5).
  101. Wang, H. S., Yu, C., Fan, P. P., Bao, B. F., Li, T., Zhu, Z. J. (2014): Identification of Two Cucumber Putative Silicon Transporter Genes in Cucumis sativus. Journal of Plant Growth Regulation. 34.
  102. Wang, S., Liu, P., Chen, D., Yin, L., Li, H., Deng, X. (2015): Silicon enhanced salt tolerance by improving the root water uptake and decreasing the ion toxicity in cucumber. Frontiers in Plant Science. 6.
  103. Wang, Y., Wang, Y. (2018): Phytophthora sojae effectors orchestrate warfare with host immunity. Current Opinion in Microbiology, 46:7–13. 01.008
  104. Ye, J., Yan, C., Liu, J., Lu, H., Liu, T., Song, Z. (2012): Effects of silicon on the distribution of cadmium compartmentation in root tips of Kandelia obovata (S., L.) Yong. Environmental Pollution. 162: 369–373.
  105. Yin, L., Shiwen, W., Li, J., Tanaka, K., Oka, M. (2013): Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum. 35.
  106. Zhang, C., Wang, L., Zhang, W., Zhang, F. (2013): Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis? Plant and Soil. 372.
  107. Zhu, Y., Gong, H. (2014): Beneficial effects of silicon on salt and drought tolerance in plants. Agronomy for Sustainable Development. 34, 455–472.
  108. Zuccarini, P. (2008): Effects of silicon on photosynthesis, water relations and nutrient uptake of Phaseolus vulgaris under NaCl stress. Biologia Plantarum. 521(1): 157–160.