Articles

Interaction impact of drought stress, nutrient-deficient water, and seed-borne pathogen (Alternaria alternata) on germination and vigor of two tomato varietiesination and vigor of two tomato varieties

Published:
2024-07-16
Authors
View
Keywords
License

Copyright (c) 2024 International Journal of Horticultural Science

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

How To Cite
Selected Style: APA
Y.T.N., N., M., M., & L., R. (2024). Interaction impact of drought stress, nutrient-deficient water, and seed-borne pathogen (Alternaria alternata) on germination and vigor of two tomato varietiesination and vigor of two tomato varieties. International Journal of Horticultural Science, 30(1), 48-53. https://doi.org/10.31421/ijhs/30/2024/13574
Abstract

Tomato (Solanum lycopersicum) is considered one of the leading vegetable plants in the world. This study evaluated the germination and vigor capabilities of ‘Marmande’ and ‘Kecskeméti Jubileum’ varieties under different conditions, including drought stress, nutrient-deficient water, and the effect of seed-borne disease caused by Alternaria alternata when prime and non-prime with salicylic acid. The experiment was conducted in the laboratory in 2023 at Agricultural and Food Sciences and Environmental Management Faculty of University of Debrecen. Results indicated that the ‘Kecskeméti Jubileum’ variety exhibited a superior strength to ‘Marmande’ in the seedling’s dry weight, seedling growth rate, and vigor index under nutrient-deficient water. Nevertheless, when applying levels of drought, the ‘Marmande’ variety had a higher viability rate of 62.5% in comparison with another variety, and the germination rate of the two tomato varieties is at 85.5% in 5% concentration but decreased progressively when exposed to a higher drought concentration of 10%. When using 3 ml of salicylic acid during germination stages, the seedling vigor index of ‘Marmande’ shows a greater index at 165 compared to ‘Kecskeméti Jubileum’, just 108 under the infection of Alternaria alternata.  The results of the examination of drought stress, and the effect of Alternaria alternata, one cause of seed-borne pathogens, showed that the percentage germination and vigor ability of the ‘Marmande’ variety performed better than ‘Kecskeméti Jubileum’ under the same conditions.

References
  1. Abdul-Baki, A. A., Anderson, J. D. (1973): Vigor determination in soybean seed by multiple criteria 1. Crop Science 13(6): 630-633. https://doi.org/10.2135/cropsci1973.0011183X001306013x.
  2. Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., Gan, S. H. (2020): Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 10(1), 45. https://doi.org/10.3390/foods10010045.
  3. Azma, J. (2018): Seed borne fungi; food spoilage; negative impact and their management: A Review. Food Science and Quality Management 81: 70-79.
  4. Basha, P. O., Sudarsanam, G., Reddy, M. M. S., Sankar, S. (2015): Effect of PEG induced water stress on germination and seedling development of tomato germplasm. International Journal of Recent Scientific Research 6(5): 4044-4049.
  5. Black, M., Pritchard, H. W. (2002): Desiccation and survival in plants drying without dying. https://doi.org/10.1093%2Faob%2Fmcg004
  6. Chrapačienė, S., Rasiukevičiūtė, N., Valiuškaitė, A. (2022): Control of seed-borne fungi by selected essential oils. Horticulturae 8(3): 220.
  7. Chaudhary, P., Sharma, A., Singh, B., Nagpal, A. (2018): Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology 55, 2833-2849. https://doi.org/10.1007/s13197-018-3221-z
  8. Collins, G., Edmisten, K. (2016): Seedling vigor: Why is it important. http://go.ncsu.edu/readext?404840.
  9. David, R. M. (2004): Carrot diseases and their management. In Diseases of Fruits and Vegetables Volume I: Diagnosis and Management (pp. 397-439). Edited by S. A. M. H. Naqvi. Kluwer Acedemic Publishers.
  10. Dempsey, D. M. A., Shah, J., & Klessig, D. F. (1999): Salicylic acid and disease resistance in plants. Critical reviews in plant sciences 18(4): 547-575.
  11. Dolatabadian, A., Sanavy, S. A. M. M., Sharifi, M. (2008): Effect of salicylic acid and salt on wheat seed germination. Acta Agriculturae Scandinavica Section B–Soil and Plant Science 59(5): 456-464. https://doi.org/10.1080/09064710802342350
  12. Gaur, A., Kumar, A., Kumri, P. (2020): Importance of seed-borne diseases of agricultural crops: Economic losses and impact on society. Seed-borne diseases of agricultural crops: detection, diagnosis & management, 3-23. Editors: Ravindra and Anuja Gupta. Springer, Singapore.
  13. Geshnizjani, N., Snoek, B. L., Willems, L. A., Rienstra, J. A., Nijveen, H., Hilhorst, H. W., Ligterink, W. (2020): Detection of QTLs for genotype× environment interactions in tomato seeds and seedlings. Plant, Cell & Environment 43(8): 1973-1988.
  14. Gomma, F. H. (2021): Detection of maize seed-borne fungi and induce resistance against both of Aspergillus niger and Fusarium verticillioides. Archives of Phytopathology and Plant Protection 54(19-20): 2051-2066. https://doi.org/10.1080/03235408.2021.1969627.
  15. Hayat, S., Fariduddin, Q., Ali, B., Ahmad, A. J. A. A. H. (2005): Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica 53(4): 433-437.
  16. Hayat, S., Irfan, M., Wani, A. S., Nasser, A., Ahmad, A. (2012): Salicylic acids: local, systemic or inter-systemic regulators? Plant Signaling & Behavior 7(1): 93-102.
  17. Helyes, L., Varga, G., Dimény, J., Pék, Z. (1998): The simultaneous effect of variety, irrigation and weather on tomato yield. In VI International Symposium on Processing Tomato & Workshop on Irrigation & Fertigation of Processing Tomato 487 (pp. 499-506).
  18. Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A., Khan, N. A. (2015): Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science 6: 462. https://doi.org/10.3389/fpls.2015.00462.
  19. Li, A., Sun, X., Liu, L., (2022): Action of salicylic acid on plant growth. Frontiers in Plant Science 13: 878076. https://doi.org/10.3389/fpls.2022.878076.
  20. Martinez-Villalta, J., Garcia-Forner, N. (2017): Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant, Cell & Environment 40(6): 962-976. https://doi.org/10.1111/pce.12846
  21. Mekonnen, S. A., Merenstein, D., Fraser, C. M., Marco, M. L. (2020): Molecular mechanism of probiotic prevention of antibiotic-associated diarrhea. Current Opinion in Biotechnology 61: 226-234. https://doi.org/10.1016/j.copbio.2020.01.005
  22. Narasimhamurthy, K., Soumya, K., Udayashankar, A. C., Srinivas, C., Niranjana, S. R., (2019): Elicitation of innate immunity in tomato by salicylic acid and Amomum nilgiricum against Ralstonia solanacearum. Biocatalysis and Agricultural Biotechnology 22: 101414. https://doi.org/10.1016/j.bcab.2019.101414.
  23. Pervez, M. A., Ayub, C. M., Khan, H. A., Shahid, M. A., Ashraf, I. (2009): Effect of drought stress on growth, yield and seed quality of tomato (Lycopersicon esculentum L.). Pakistan Journal of Agricultural Sciences 46(3): 174-178.
  24. Rivas-San Vicente, M., Plasencia, J. (2011): Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany 62(10): 3321-3338.
  25. Yang, X., Lu, M., Wang, Y., Liu, Z., Chen, S. (2021): Response mechanism of plants to drought stress. Horticulture 7(3): 50. https://www.mdpi.com/2311-7524/7/3/50#.
  26. Zhang, Y., Zhao, J., Li, Y., Wang, J., Guo, R., Gan, S., Liu, C., Zhang, K. (2017): S5H/DMR6 encodes a salicylic acid 5-hydroxylase that fine-tunes salicylic acid homeostasis. Plant Physiology 175(3): 1082-1093. https://doi.org/10.1104/pp. 17.00695.
  27. Zhang, X., Wang, R., Ning, H., Li, W., Bai, Y., Li, Y. (2020): Evaluation and management of fungal-infected carrot seeds. Scientific Reports 10(1): 10808.https://doi.org/10.1038/s41598-020-67907-5.